有理曲线变形虫的棘

G. Mikhalkin, Johannes Rau
{"title":"有理曲线变形虫的棘","authors":"G. Mikhalkin, Johannes Rau","doi":"10.4171/LEM/65-3/4-3","DOIUrl":null,"url":null,"abstract":"To every rational complex curve $C \\subset (\\mathbf{C}^\\times)^n$ we associate a rational tropical curve $\\Gamma \\subset \\mathbf{R}^n$ so that the amoeba $\\mathcal{A}(C) \\subset \\mathbf{R}^n$ of $C$ is within a bounded distance from $\\Gamma$. In accordance with the terminology introduced by Passare and Rullgard, we call $\\Gamma$ the spine of $\\mathcal{A}(C)$. We use spines to describe tropical limits of sequences of rational complex curves.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spines for amoebas of rational curves\",\"authors\":\"G. Mikhalkin, Johannes Rau\",\"doi\":\"10.4171/LEM/65-3/4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To every rational complex curve $C \\\\subset (\\\\mathbf{C}^\\\\times)^n$ we associate a rational tropical curve $\\\\Gamma \\\\subset \\\\mathbf{R}^n$ so that the amoeba $\\\\mathcal{A}(C) \\\\subset \\\\mathbf{R}^n$ of $C$ is within a bounded distance from $\\\\Gamma$. In accordance with the terminology introduced by Passare and Rullgard, we call $\\\\Gamma$ the spine of $\\\\mathcal{A}(C)$. We use spines to describe tropical limits of sequences of rational complex curves.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/65-3/4-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/65-3/4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于每一个有理复曲线$C \子集(\mathbf{C}^\times)^n$,我们关联一个有理热带曲线$\Gamma \子集\mathbf{R}^n$,使得$C$的变应虫$\ mathbf{a}(C) \子集\mathbf{R}^n$在$\Gamma$的有界距离内。根据Passare和Rullgard引入的术语,我们称$\Gamma$为$\mathcal{A}(C)$的脊骨。我们用棘来描述有理复曲线序列的热带极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spines for amoebas of rational curves
To every rational complex curve $C \subset (\mathbf{C}^\times)^n$ we associate a rational tropical curve $\Gamma \subset \mathbf{R}^n$ so that the amoeba $\mathcal{A}(C) \subset \mathbf{R}^n$ of $C$ is within a bounded distance from $\Gamma$. In accordance with the terminology introduced by Passare and Rullgard, we call $\Gamma$ the spine of $\mathcal{A}(C)$. We use spines to describe tropical limits of sequences of rational complex curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信