N. Papandreou, Thomas Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp, T. Griffin, G. Tressler, Andrew Walls
{"title":"采用自适应读电压阈值提高MLC NAND闪存系统的可靠性","authors":"N. Papandreou, Thomas Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp, T. Griffin, G. Tressler, Andrew Walls","doi":"10.1145/2591513.2591594","DOIUrl":null,"url":null,"abstract":"NAND Flash memory is not only the ubiquitous storage medium in consumer applications, but has also started to appear in enterprise storage systems as well. MLC and TLC Flash technology made it possible to store multiple bits in the same silicon area as SLC, thus reducing the cost per amount of data stored. However, at current sub-20nm technology nodes, MLC Flash devices fail to provide the levels of raw reliability, mainly cycling endurance, that are required by typical enterprise applications. Advanced signal-processing and coding schemes are needed to improve the Flash bit error rate and thus elevate the device reliability to the desired level. In this paper, we report on the use of adaptive voltage thresholds in the read operation of NAND Flash devices. We discuss how the optimal read voltage thresholds can be determined, and assess the benefit of adapting the read voltage thresholds in terms of cycling endurance, data retention and resilience to read disturb.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Using adaptive read voltage thresholds to enhance the reliability of MLC NAND flash memory systems\",\"authors\":\"N. Papandreou, Thomas Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp, T. Griffin, G. Tressler, Andrew Walls\",\"doi\":\"10.1145/2591513.2591594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NAND Flash memory is not only the ubiquitous storage medium in consumer applications, but has also started to appear in enterprise storage systems as well. MLC and TLC Flash technology made it possible to store multiple bits in the same silicon area as SLC, thus reducing the cost per amount of data stored. However, at current sub-20nm technology nodes, MLC Flash devices fail to provide the levels of raw reliability, mainly cycling endurance, that are required by typical enterprise applications. Advanced signal-processing and coding schemes are needed to improve the Flash bit error rate and thus elevate the device reliability to the desired level. In this paper, we report on the use of adaptive voltage thresholds in the read operation of NAND Flash devices. We discuss how the optimal read voltage thresholds can be determined, and assess the benefit of adapting the read voltage thresholds in terms of cycling endurance, data retention and resilience to read disturb.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using adaptive read voltage thresholds to enhance the reliability of MLC NAND flash memory systems
NAND Flash memory is not only the ubiquitous storage medium in consumer applications, but has also started to appear in enterprise storage systems as well. MLC and TLC Flash technology made it possible to store multiple bits in the same silicon area as SLC, thus reducing the cost per amount of data stored. However, at current sub-20nm technology nodes, MLC Flash devices fail to provide the levels of raw reliability, mainly cycling endurance, that are required by typical enterprise applications. Advanced signal-processing and coding schemes are needed to improve the Flash bit error rate and thus elevate the device reliability to the desired level. In this paper, we report on the use of adaptive voltage thresholds in the read operation of NAND Flash devices. We discuss how the optimal read voltage thresholds can be determined, and assess the benefit of adapting the read voltage thresholds in terms of cycling endurance, data retention and resilience to read disturb.