H. Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi, Mitsuru Nakazawa, Yeongnam Chae, B. Stenger
{"title":"足球录像中的动作识别与时间注意力分析","authors":"H. Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi, Mitsuru Nakazawa, Yeongnam Chae, B. Stenger","doi":"10.23919/MVA51890.2021.9511342","DOIUrl":null,"url":null,"abstract":"Action spotting is the task of finding a specific action in a video. In this paper, we consider the task of spotting actions in soccer videos, e.g., goals, player substitutions, and card scenes, which are temporally sparse within a complete game. We spot actions using a Transformer model, which allows capturing important features before and after action scenes. Moreover, we analyze which time instances the model focuses on when predicting an action by observing the internal weights of the transformer. Quantitative results on the public SoccerNet dataset show that the proposed method achieves an mAP of 81.6%, a significant improvement over previous methods. In addition, by analyzing the attention weights, we discover that the model focuses on different temporal neighborhoods for different actions.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Action Spotting and Temporal Attention Analysis in Soccer Videos\",\"authors\":\"H. Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi, Mitsuru Nakazawa, Yeongnam Chae, B. Stenger\",\"doi\":\"10.23919/MVA51890.2021.9511342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Action spotting is the task of finding a specific action in a video. In this paper, we consider the task of spotting actions in soccer videos, e.g., goals, player substitutions, and card scenes, which are temporally sparse within a complete game. We spot actions using a Transformer model, which allows capturing important features before and after action scenes. Moreover, we analyze which time instances the model focuses on when predicting an action by observing the internal weights of the transformer. Quantitative results on the public SoccerNet dataset show that the proposed method achieves an mAP of 81.6%, a significant improvement over previous methods. In addition, by analyzing the attention weights, we discover that the model focuses on different temporal neighborhoods for different actions.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Action Spotting and Temporal Attention Analysis in Soccer Videos
Action spotting is the task of finding a specific action in a video. In this paper, we consider the task of spotting actions in soccer videos, e.g., goals, player substitutions, and card scenes, which are temporally sparse within a complete game. We spot actions using a Transformer model, which allows capturing important features before and after action scenes. Moreover, we analyze which time instances the model focuses on when predicting an action by observing the internal weights of the transformer. Quantitative results on the public SoccerNet dataset show that the proposed method achieves an mAP of 81.6%, a significant improvement over previous methods. In addition, by analyzing the attention weights, we discover that the model focuses on different temporal neighborhoods for different actions.