{"title":"PV-PEM混合燃料电池动力系统建模与分析","authors":"H. Bahri, Adelghani Harrag","doi":"10.18280/psees.040104","DOIUrl":null,"url":null,"abstract":"Among the renewable energy sources, photovoltaics seems to be the most promising source. It has the advantage of being available everywhere, friend of the environment and easily maintainable. Nevertheless, the major disadvantages are high manufacturing cost, low energy conversion efficiency and non-linear characteristics. On the other hand, the fuel cell is undoubtedly the least polluting means of making electrical energy. Indeed, apart from electricity, the reaction between hydrogen and air produces only water vapour. As such, the process does not reject any greenhouse gases, unlike the combustion of fossil fuels. Whether in a transport-type application (bus or car, or stationary, energy systems including PV or Fuel Cell systems have a in such systems, several levels of control are to be studied, modelled and optimized; this last point, according to one or more criteria of the whole system, can intervene at several levels: optimization of the topology as well as optimization of component sizing. This paper addresses the modelling of hybrid PV-PEM fuel cell power system where the whole system components are implemented using Matlab/Simulink environment. The main parts (PV and PEM fuel cell) are analyzed and investigated alone and in hybrid mode using different scenarios tests. The simulation results show the advantages of using such hybrid system in providing electrical energy in different use cases.","PeriodicalId":263430,"journal":{"name":"Progress in Solar Energy and Engineering Systems","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and Analysis of Hybrid PV-PEM Fuel Cell Power System\",\"authors\":\"H. Bahri, Adelghani Harrag\",\"doi\":\"10.18280/psees.040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the renewable energy sources, photovoltaics seems to be the most promising source. It has the advantage of being available everywhere, friend of the environment and easily maintainable. Nevertheless, the major disadvantages are high manufacturing cost, low energy conversion efficiency and non-linear characteristics. On the other hand, the fuel cell is undoubtedly the least polluting means of making electrical energy. Indeed, apart from electricity, the reaction between hydrogen and air produces only water vapour. As such, the process does not reject any greenhouse gases, unlike the combustion of fossil fuels. Whether in a transport-type application (bus or car, or stationary, energy systems including PV or Fuel Cell systems have a in such systems, several levels of control are to be studied, modelled and optimized; this last point, according to one or more criteria of the whole system, can intervene at several levels: optimization of the topology as well as optimization of component sizing. This paper addresses the modelling of hybrid PV-PEM fuel cell power system where the whole system components are implemented using Matlab/Simulink environment. The main parts (PV and PEM fuel cell) are analyzed and investigated alone and in hybrid mode using different scenarios tests. The simulation results show the advantages of using such hybrid system in providing electrical energy in different use cases.\",\"PeriodicalId\":263430,\"journal\":{\"name\":\"Progress in Solar Energy and Engineering Systems\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solar Energy and Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/psees.040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solar Energy and Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/psees.040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and Analysis of Hybrid PV-PEM Fuel Cell Power System
Among the renewable energy sources, photovoltaics seems to be the most promising source. It has the advantage of being available everywhere, friend of the environment and easily maintainable. Nevertheless, the major disadvantages are high manufacturing cost, low energy conversion efficiency and non-linear characteristics. On the other hand, the fuel cell is undoubtedly the least polluting means of making electrical energy. Indeed, apart from electricity, the reaction between hydrogen and air produces only water vapour. As such, the process does not reject any greenhouse gases, unlike the combustion of fossil fuels. Whether in a transport-type application (bus or car, or stationary, energy systems including PV or Fuel Cell systems have a in such systems, several levels of control are to be studied, modelled and optimized; this last point, according to one or more criteria of the whole system, can intervene at several levels: optimization of the topology as well as optimization of component sizing. This paper addresses the modelling of hybrid PV-PEM fuel cell power system where the whole system components are implemented using Matlab/Simulink environment. The main parts (PV and PEM fuel cell) are analyzed and investigated alone and in hybrid mode using different scenarios tests. The simulation results show the advantages of using such hybrid system in providing electrical energy in different use cases.