交换环的平面幂等因子图的顶点和区域着色。

Mohammed Authman, Husam Q. Mohammad, Nazar H. Shuker
{"title":"交换环的平面幂等因子图的顶点和区域着色。","authors":"Mohammed Authman, Husam Q. Mohammad, Nazar H. Shuker","doi":"10.52866/ijcsm.2022.01.01.008","DOIUrl":null,"url":null,"abstract":"The idempotent divisor graph of a commutative ring R is a graph with vertices set in R* = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e, for some non-unit idempotent element e2 = e ϵ R, and is denoted by Л(R). The purpose of this work is using some properties of ring theory and graph theory to find the clique number, the chromatic number and the region chromatic number for every planar idempotent divisor graphs of commutative rings. Also we show the clique number is equal to the chromatic number for any planar idempotent divisor graph. Among other results we prove that: Let Fq, Fpa are fieldes of orders q and pa respectively, where q=2 or 3, p is a prime number and a Is a positive integer. If a ring R @ Fq x Fpa . Then (Л(R))= (Л(R)) = *( Л(R)) = 3.","PeriodicalId":158721,"journal":{"name":"Iraqi Journal for Computer Science and Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vertex and region colorings of planar idempotent divisor graphs of commutative rings.\",\"authors\":\"Mohammed Authman, Husam Q. Mohammad, Nazar H. Shuker\",\"doi\":\"10.52866/ijcsm.2022.01.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idempotent divisor graph of a commutative ring R is a graph with vertices set in R* = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e, for some non-unit idempotent element e2 = e ϵ R, and is denoted by Л(R). The purpose of this work is using some properties of ring theory and graph theory to find the clique number, the chromatic number and the region chromatic number for every planar idempotent divisor graphs of commutative rings. Also we show the clique number is equal to the chromatic number for any planar idempotent divisor graph. Among other results we prove that: Let Fq, Fpa are fieldes of orders q and pa respectively, where q=2 or 3, p is a prime number and a Is a positive integer. If a ring R @ Fq x Fpa . Then (Л(R))= (Л(R)) = *( Л(R)) = 3.\",\"PeriodicalId\":158721,\"journal\":{\"name\":\"Iraqi Journal for Computer Science and Mathematics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52866/ijcsm.2022.01.01.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52866/ijcsm.2022.01.01.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交换环R的幂等因子图是顶点集于R* = R-{0}的图,且对于某些非单位幂等元素e2 = e λ R,任意不同的顶点x与y相邻当且仅当x.y = e,且表示为Л(R)。利用环论和图论的一些性质,求出交换环上每一个平面幂等因子图的团数、色数和区域色数。我们还证明了对于任何平面幂等因子图,团数等于色数。我们证明了:设Fq、Fpa分别是q阶域和pa阶域,其中q=2或3,p为素数,a为正整数。如果一个环R @ Fq x Fpa。则(Л(R))= (Л(R))= *(Л(R))= 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertex and region colorings of planar idempotent divisor graphs of commutative rings.
The idempotent divisor graph of a commutative ring R is a graph with vertices set in R* = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e, for some non-unit idempotent element e2 = e ϵ R, and is denoted by Л(R). The purpose of this work is using some properties of ring theory and graph theory to find the clique number, the chromatic number and the region chromatic number for every planar idempotent divisor graphs of commutative rings. Also we show the clique number is equal to the chromatic number for any planar idempotent divisor graph. Among other results we prove that: Let Fq, Fpa are fieldes of orders q and pa respectively, where q=2 or 3, p is a prime number and a Is a positive integer. If a ring R @ Fq x Fpa . Then (Л(R))= (Л(R)) = *( Л(R)) = 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信