基于误差估计的船舶航迹自适应控制

Gui-Chen Zhang, Guang Ren
{"title":"基于误差估计的船舶航迹自适应控制","authors":"Gui-Chen Zhang, Guang Ren","doi":"10.1109/FSKD.2008.286","DOIUrl":null,"url":null,"abstract":"The error estimator control scheme for ship track with unknown dynamics is proposed in this paper. The control scheme is based on a multilayer perceptrons neural network (MLPNN) of the ship. The MLPNN is adapted by an extended Kalman filter (EKF) to learn ship's dynamics changes. Therefore, the autopilot output is guaranteed to converge to the desired trajectory asymptotically, and the ship also tracks the desired trajectory due to error estimator. The proposed scheme is evaluated by applying it to a simulated continuous ship's movement process.","PeriodicalId":208332,"journal":{"name":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ship Track Adaptive Control Using Error Estimator\",\"authors\":\"Gui-Chen Zhang, Guang Ren\",\"doi\":\"10.1109/FSKD.2008.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error estimator control scheme for ship track with unknown dynamics is proposed in this paper. The control scheme is based on a multilayer perceptrons neural network (MLPNN) of the ship. The MLPNN is adapted by an extended Kalman filter (EKF) to learn ship's dynamics changes. Therefore, the autopilot output is guaranteed to converge to the desired trajectory asymptotically, and the ship also tracks the desired trajectory due to error estimator. The proposed scheme is evaluated by applying it to a simulated continuous ship's movement process.\",\"PeriodicalId\":208332,\"journal\":{\"name\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2008.286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2008.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种未知动态船舶航迹误差估计器控制方案。该控制方案基于船舶的多层感知器神经网络(MLPNN)。MLPNN采用扩展卡尔曼滤波(EKF)来学习船舶的动力学变化。因此,保证了自动驾驶仪输出渐近收敛于期望轨迹,并且由于误差估计器的存在,船舶也跟踪期望轨迹。通过模拟船舶连续运动过程,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship Track Adaptive Control Using Error Estimator
The error estimator control scheme for ship track with unknown dynamics is proposed in this paper. The control scheme is based on a multilayer perceptrons neural network (MLPNN) of the ship. The MLPNN is adapted by an extended Kalman filter (EKF) to learn ship's dynamics changes. Therefore, the autopilot output is guaranteed to converge to the desired trajectory asymptotically, and the ship also tracks the desired trajectory due to error estimator. The proposed scheme is evaluated by applying it to a simulated continuous ship's movement process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信