{"title":"节流磁盘调度器以满足软实时需求","authors":"M. Stanovich, T. Baker, An-I Wang","doi":"10.1109/RTAS.2008.30","DOIUrl":null,"url":null,"abstract":"Many contemporary disk drives have built-in queues and schedulers. These features can improve I/O performance, by offloading work from the system's main processor, avoiding disk idle time, and taking advantage of vendor-specific disk characteristics. At the same time, they pose challenges for scheduling requests that have real-time requirements, since the operating system has less visibility and control over service times. While it may be possible for an operating system to obtain more predictable real-time performance by bypassing the on-disk queue and scheduler, the diversity and continuing evolution of disk drives make it difficult to extract the necessary detailed timing characteristics of a specific disk, and to generalize that approach to all hard drives. This paper demonstrates three techniques we developed in the Linux operating system to bound real-time request response times for disks with internal queues and schedulers. The first technique is to use the disk's built-in starvation prevention scheme. The second is to prevent requests from being sent to the disk when real-time requests are waiting to be served. The third is to limit the length of the on-disk queue in addition to the second technique. Our results show the ability to guarantee a wide range of desired response times while still allowing the disk to perform scheduling optimizations. These techniques can be generalized to disks from different vendors.","PeriodicalId":130593,"journal":{"name":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Throttling On-Disk Schedulers to Meet Soft-Real-Time Requirements\",\"authors\":\"M. Stanovich, T. Baker, An-I Wang\",\"doi\":\"10.1109/RTAS.2008.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many contemporary disk drives have built-in queues and schedulers. These features can improve I/O performance, by offloading work from the system's main processor, avoiding disk idle time, and taking advantage of vendor-specific disk characteristics. At the same time, they pose challenges for scheduling requests that have real-time requirements, since the operating system has less visibility and control over service times. While it may be possible for an operating system to obtain more predictable real-time performance by bypassing the on-disk queue and scheduler, the diversity and continuing evolution of disk drives make it difficult to extract the necessary detailed timing characteristics of a specific disk, and to generalize that approach to all hard drives. This paper demonstrates three techniques we developed in the Linux operating system to bound real-time request response times for disks with internal queues and schedulers. The first technique is to use the disk's built-in starvation prevention scheme. The second is to prevent requests from being sent to the disk when real-time requests are waiting to be served. The third is to limit the length of the on-disk queue in addition to the second technique. Our results show the ability to guarantee a wide range of desired response times while still allowing the disk to perform scheduling optimizations. These techniques can be generalized to disks from different vendors.\",\"PeriodicalId\":130593,\"journal\":{\"name\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2008.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2008.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Throttling On-Disk Schedulers to Meet Soft-Real-Time Requirements
Many contemporary disk drives have built-in queues and schedulers. These features can improve I/O performance, by offloading work from the system's main processor, avoiding disk idle time, and taking advantage of vendor-specific disk characteristics. At the same time, they pose challenges for scheduling requests that have real-time requirements, since the operating system has less visibility and control over service times. While it may be possible for an operating system to obtain more predictable real-time performance by bypassing the on-disk queue and scheduler, the diversity and continuing evolution of disk drives make it difficult to extract the necessary detailed timing characteristics of a specific disk, and to generalize that approach to all hard drives. This paper demonstrates three techniques we developed in the Linux operating system to bound real-time request response times for disks with internal queues and schedulers. The first technique is to use the disk's built-in starvation prevention scheme. The second is to prevent requests from being sent to the disk when real-time requests are waiting to be served. The third is to limit the length of the on-disk queue in addition to the second technique. Our results show the ability to guarantee a wide range of desired response times while still allowing the disk to perform scheduling optimizations. These techniques can be generalized to disks from different vendors.