Krishna Sudarsana: z空间相似性度量

V. Radhakrishna, P. Kumar, V. Janaki
{"title":"Krishna Sudarsana: z空间相似性度量","authors":"V. Radhakrishna, P. Kumar, V. Janaki","doi":"10.1145/3234698.3234742","DOIUrl":null,"url":null,"abstract":"Similarity profiled association mining from time stamped transaction databases is an important topic of research relatively less addressed in the field of temporal data mining. Mining temporal patterns from these databases requires choosing and applying similarity measure for pruning patterns after computing similarity degree. This paper proposes a new z-space based similarity measure KRISHNA SUDARSANA for time-stamped transaction databases. Applying KRISHNA SUDARSANA requires moving the threshold value given by user to a different transformation space (z-space) and is a function of standard deviation. A new expression for standard deviation is derived for use in the expression for similarity measure. This research extends the similarity measure SRIHASS by using a product based membership function.","PeriodicalId":144334,"journal":{"name":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Krishna Sudarsana: A Z-Space Similarity Measure\",\"authors\":\"V. Radhakrishna, P. Kumar, V. Janaki\",\"doi\":\"10.1145/3234698.3234742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity profiled association mining from time stamped transaction databases is an important topic of research relatively less addressed in the field of temporal data mining. Mining temporal patterns from these databases requires choosing and applying similarity measure for pruning patterns after computing similarity degree. This paper proposes a new z-space based similarity measure KRISHNA SUDARSANA for time-stamped transaction databases. Applying KRISHNA SUDARSANA requires moving the threshold value given by user to a different transformation space (z-space) and is a function of standard deviation. A new expression for standard deviation is derived for use in the expression for similarity measure. This research extends the similarity measure SRIHASS by using a product based membership function.\",\"PeriodicalId\":144334,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Engineering & MIS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234698.3234742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Engineering & MIS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234698.3234742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

从时间戳事务数据库中挖掘相似度是时态数据挖掘中一个相对较少研究的重要课题。从这些数据库中挖掘时间模式需要在计算相似度后选择并应用相似度量来修剪模式。本文针对时间戳事务数据库提出了一种新的基于z空间的相似性度量方法KRISHNA SUDARSANA。应用KRISHNA SUDARSANA需要将用户给出的阈值移动到不同的变换空间(z空间),并且是标准差的函数。导出了一种新的标准差表达式,用于相似性度量表达式。本研究通过使用基于产品的隶属函数扩展了相似性度量SRIHASS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Krishna Sudarsana: A Z-Space Similarity Measure
Similarity profiled association mining from time stamped transaction databases is an important topic of research relatively less addressed in the field of temporal data mining. Mining temporal patterns from these databases requires choosing and applying similarity measure for pruning patterns after computing similarity degree. This paper proposes a new z-space based similarity measure KRISHNA SUDARSANA for time-stamped transaction databases. Applying KRISHNA SUDARSANA requires moving the threshold value given by user to a different transformation space (z-space) and is a function of standard deviation. A new expression for standard deviation is derived for use in the expression for similarity measure. This research extends the similarity measure SRIHASS by using a product based membership function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信