宽带数字积分器

Maneesha Gupta, Madhu Jain, B. Kumar
{"title":"宽带数字积分器","authors":"Maneesha Gupta, Madhu Jain, B. Kumar","doi":"10.1109/MSPCT.2009.5164185","DOIUrl":null,"url":null,"abstract":"A novel recursive wideband digital integrator is presented. The integrator is obtained by interpolating two popular digital integration techniques, the SKG (Schneider-Kaneshige-Groutage) rule and the trapezoidal rule. The proposed integrator accurately approximates the ideal integrator reasonably well over the entire Nyquist frequency range with absolute magnitude error ≤ 0.02 and compares favourably with the existing integrators. The proposed integrator is of third order and is highly accurate.","PeriodicalId":179541,"journal":{"name":"2009 International Multimedia, Signal Processing and Communication Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Wideband digital integrator\",\"authors\":\"Maneesha Gupta, Madhu Jain, B. Kumar\",\"doi\":\"10.1109/MSPCT.2009.5164185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel recursive wideband digital integrator is presented. The integrator is obtained by interpolating two popular digital integration techniques, the SKG (Schneider-Kaneshige-Groutage) rule and the trapezoidal rule. The proposed integrator accurately approximates the ideal integrator reasonably well over the entire Nyquist frequency range with absolute magnitude error ≤ 0.02 and compares favourably with the existing integrators. The proposed integrator is of third order and is highly accurate.\",\"PeriodicalId\":179541,\"journal\":{\"name\":\"2009 International Multimedia, Signal Processing and Communication Technologies\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Multimedia, Signal Processing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSPCT.2009.5164185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Multimedia, Signal Processing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSPCT.2009.5164185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种新型的递归宽带数字积分器。该积分器通过插值两种流行的数字积分技术,即SKG (schneider - kaneshige - grouke)规则和梯形规则得到。该积分器在整个奈奎斯特频率范围内较好地逼近理想积分器,绝对值误差≤0.02,优于现有的积分器。所提出的积分器是三阶的,精度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wideband digital integrator
A novel recursive wideband digital integrator is presented. The integrator is obtained by interpolating two popular digital integration techniques, the SKG (Schneider-Kaneshige-Groutage) rule and the trapezoidal rule. The proposed integrator accurately approximates the ideal integrator reasonably well over the entire Nyquist frequency range with absolute magnitude error ≤ 0.02 and compares favourably with the existing integrators. The proposed integrator is of third order and is highly accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信