具有简单奇点的Milnor纤维的同调镜像对称

Yankı Lekili, K. Ueda
{"title":"具有简单奇点的Milnor纤维的同调镜像对称","authors":"Yankı Lekili, K. Ueda","doi":"10.14231/AG-2021-017","DOIUrl":null,"url":null,"abstract":"We prove homological mirror symmetry for Milnor fibers of simple singularities, which are among the log Fano cases of Conjecture 1.5 in arXiv:1806.04345. The proof is based on a relation between matrix factorizations and Calabi--Yau completions. As an application, we give an explicit computation of the symplectic cohomology group of the Milnor fiber of a simple singularity in all dimensions.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Homological mirror symmetry for Milnor fibers of simple singularities\",\"authors\":\"Yankı Lekili, K. Ueda\",\"doi\":\"10.14231/AG-2021-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove homological mirror symmetry for Milnor fibers of simple singularities, which are among the log Fano cases of Conjecture 1.5 in arXiv:1806.04345. The proof is based on a relation between matrix factorizations and Calabi--Yau completions. As an application, we give an explicit computation of the symplectic cohomology group of the Milnor fiber of a simple singularity in all dimensions.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2021-017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14231/AG-2021-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们证明了在arXiv:1806.04345猜想1.5的log Fano情形中具有简单奇点的Milnor纤维的同调镜像对称。证明是基于矩阵分解和Calabi—Yau补全之间的关系。作为一个应用,我们给出了全维单奇点Milnor纤维的辛上同群的显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological mirror symmetry for Milnor fibers of simple singularities
We prove homological mirror symmetry for Milnor fibers of simple singularities, which are among the log Fano cases of Conjecture 1.5 in arXiv:1806.04345. The proof is based on a relation between matrix factorizations and Calabi--Yau completions. As an application, we give an explicit computation of the symplectic cohomology group of the Milnor fiber of a simple singularity in all dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信