模糊识别利用图像表面的第二基本形式

R. Kvyetnyy, Yu. Bunyak, Olga Sofina, A. Kotyra, Ryszard S. Romaniuk, Azhar Tuleshova
{"title":"模糊识别利用图像表面的第二基本形式","authors":"R. Kvyetnyy, Yu. Bunyak, Olga Sofina, A. Kotyra, Ryszard S. Romaniuk, Azhar Tuleshova","doi":"10.1117/12.2229103","DOIUrl":null,"url":null,"abstract":"The second fundamental form (SFF) characterizes surface bending as value and direction of normal vector to surface. The value of SFF can be used for blur elimination by simple subtractions of the SFF from image signal. This operation narrows amplitude fronts saving contours as inflection lines. However, it sharpens all small fluctuations and introduces image distortion like noise. Therefore blur recognition and elimination using SFF has to be accompanied by procedure of image estimate optimization in accordance with regularization functional which acts as nonlinear filter. Two iterative methods of original image estimate optimization are suggested. The first method uses dynamic regularization basing on condition of iteration process convergence. The second method implements the regularization in curved space with metric defined on image estimate surface. The given iterative schemes have faster convergence in comparison with known ones.","PeriodicalId":299297,"journal":{"name":"Optical Fibers and Their Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Blur recognition using second fundamental form of image surface\",\"authors\":\"R. Kvyetnyy, Yu. Bunyak, Olga Sofina, A. Kotyra, Ryszard S. Romaniuk, Azhar Tuleshova\",\"doi\":\"10.1117/12.2229103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second fundamental form (SFF) characterizes surface bending as value and direction of normal vector to surface. The value of SFF can be used for blur elimination by simple subtractions of the SFF from image signal. This operation narrows amplitude fronts saving contours as inflection lines. However, it sharpens all small fluctuations and introduces image distortion like noise. Therefore blur recognition and elimination using SFF has to be accompanied by procedure of image estimate optimization in accordance with regularization functional which acts as nonlinear filter. Two iterative methods of original image estimate optimization are suggested. The first method uses dynamic regularization basing on condition of iteration process convergence. The second method implements the regularization in curved space with metric defined on image estimate surface. The given iterative schemes have faster convergence in comparison with known ones.\",\"PeriodicalId\":299297,\"journal\":{\"name\":\"Optical Fibers and Their Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fibers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2229103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fibers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2229103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

第二种基本形式(SFF)将曲面弯曲表征为法向量到曲面的值和方向。通过简单地从图像信号中减去SFF值,可以使用SFF值来消除模糊。该操作缩小幅度前,保存轮廓线作为拐点线。然而,它会锐化所有小的波动,并引入像噪声这样的图像畸变。因此,利用SFF进行模糊识别和消除必须伴随着按照正则化函数作为非线性滤波器进行图像估计优化的过程。提出了原始图像估计优化的两种迭代方法。第一种方法采用基于迭代过程收敛条件的动态正则化方法。第二种方法是在图像估计曲面上定义度量,在曲面空间中实现正则化。与已知的迭代格式相比,所给出的迭代格式收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blur recognition using second fundamental form of image surface
The second fundamental form (SFF) characterizes surface bending as value and direction of normal vector to surface. The value of SFF can be used for blur elimination by simple subtractions of the SFF from image signal. This operation narrows amplitude fronts saving contours as inflection lines. However, it sharpens all small fluctuations and introduces image distortion like noise. Therefore blur recognition and elimination using SFF has to be accompanied by procedure of image estimate optimization in accordance with regularization functional which acts as nonlinear filter. Two iterative methods of original image estimate optimization are suggested. The first method uses dynamic regularization basing on condition of iteration process convergence. The second method implements the regularization in curved space with metric defined on image estimate surface. The given iterative schemes have faster convergence in comparison with known ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信