{"title":"考虑V2V通信的车辆队列方案:一种联合通信/控制方法","authors":"T. Gonçalves, V. Varma, S. Elayoubi","doi":"10.1109/WCNC45663.2020.9120759","DOIUrl":null,"url":null,"abstract":"This article addresses communication and control aspects of platooning systems with the related challenges introduced by the overlap of both areas. The main objective is to provide a dynamic control mechanism where the parameters of the well-known Predicted Cooperative Adaptive Cruise Control (PCACC) are adapted based on the observed quality of the V2V (Vehicle-to-Vehicle) communication links. Different from the state of the art, our main design goal is the minimization of inter-vehicular distances while being robust in terms of an extremely low probability of emergency braking. A new adaptive control scheme based on the offline optimization of the control gains is proposed. We evaluate the new approach in a highway scenario and show the improvements obtained by the dynamic adaptation of the control parameters over static control strategies.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Vehicle platooning schemes considering V2V communications: A joint communication/control approach\",\"authors\":\"T. Gonçalves, V. Varma, S. Elayoubi\",\"doi\":\"10.1109/WCNC45663.2020.9120759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses communication and control aspects of platooning systems with the related challenges introduced by the overlap of both areas. The main objective is to provide a dynamic control mechanism where the parameters of the well-known Predicted Cooperative Adaptive Cruise Control (PCACC) are adapted based on the observed quality of the V2V (Vehicle-to-Vehicle) communication links. Different from the state of the art, our main design goal is the minimization of inter-vehicular distances while being robust in terms of an extremely low probability of emergency braking. A new adaptive control scheme based on the offline optimization of the control gains is proposed. We evaluate the new approach in a highway scenario and show the improvements obtained by the dynamic adaptation of the control parameters over static control strategies.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle platooning schemes considering V2V communications: A joint communication/control approach
This article addresses communication and control aspects of platooning systems with the related challenges introduced by the overlap of both areas. The main objective is to provide a dynamic control mechanism where the parameters of the well-known Predicted Cooperative Adaptive Cruise Control (PCACC) are adapted based on the observed quality of the V2V (Vehicle-to-Vehicle) communication links. Different from the state of the art, our main design goal is the minimization of inter-vehicular distances while being robust in terms of an extremely low probability of emergency braking. A new adaptive control scheme based on the offline optimization of the control gains is proposed. We evaluate the new approach in a highway scenario and show the improvements obtained by the dynamic adaptation of the control parameters over static control strategies.