{"title":"婴儿哭声识别系统","authors":"Yosra Mohammed","doi":"10.4018/978-1-6684-2408-7.ch029","DOIUrl":null,"url":null,"abstract":"Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.","PeriodicalId":143045,"journal":{"name":"Research Anthology on Artificial Neural Network Applications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infant Cry Recognition System\",\"authors\":\"Yosra Mohammed\",\"doi\":\"10.4018/978-1-6684-2408-7.ch029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.\",\"PeriodicalId\":143045,\"journal\":{\"name\":\"Research Anthology on Artificial Neural Network Applications\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Artificial Neural Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-6684-2408-7.ch029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Artificial Neural Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-6684-2408-7.ch029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.