基于能量的α-κ-μ衰落信道贝叶斯频谱传感

Sanjeev Gurugopinath, S. Shobitha
{"title":"基于能量的α-κ-μ衰落信道贝叶斯频谱传感","authors":"Sanjeev Gurugopinath, S. Shobitha","doi":"10.1109/CONECCT.2015.7383881","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of energy detection for spectrum sensing over the α-κ-μ fading channel, in a Bayesian framework. The α-κ-μ fading distribution includes popular models such as Rayleigh, Rice, Nakagami-m, Weibull, one-sided Gaussian, α-μ, κ-μ and κ-μ extreme distributions as special cases. We present a fast-converging infinite series expression for the probability of overall error, i.e., the convex combination of probability of false-alarm and probability of signal detection. We also present an analysis on optimal detection threshold that minimizes the probability of error. We discuss the performance of our detector for various values of the fading parameters through numerical techniques and validate our analysis through Monte Carlo simulations.","PeriodicalId":168357,"journal":{"name":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-based Bayesian spectrum sensing over α-κ-μ fading channels\",\"authors\":\"Sanjeev Gurugopinath, S. Shobitha\",\"doi\":\"10.1109/CONECCT.2015.7383881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of energy detection for spectrum sensing over the α-κ-μ fading channel, in a Bayesian framework. The α-κ-μ fading distribution includes popular models such as Rayleigh, Rice, Nakagami-m, Weibull, one-sided Gaussian, α-μ, κ-μ and κ-μ extreme distributions as special cases. We present a fast-converging infinite series expression for the probability of overall error, i.e., the convex combination of probability of false-alarm and probability of signal detection. We also present an analysis on optimal detection threshold that minimizes the probability of error. We discuss the performance of our detector for various values of the fading parameters through numerical techniques and validate our analysis through Monte Carlo simulations.\",\"PeriodicalId\":168357,\"journal\":{\"name\":\"2017 9th International Conference on Communication Systems and Networks (COMSNETS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Communication Systems and Networks (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT.2015.7383881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT.2015.7383881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了在贝叶斯框架下,在α-κ-μ衰落信道上的频谱感知能量检测问题。α-κ-μ衰落分布包括常用的Rayleigh、Rice、Nakagami-m、Weibull、单侧高斯分布、α-μ、κ-μ和κ-μ极值分布等。给出了整体误差概率的一个快速收敛的无穷级数表达式,即虚警概率与信号检测概率的凸组合。我们也提出了一个最佳检测阈值的分析,以最小化错误的概率。我们通过数值技术讨论了我们的检测器在不同衰落参数值下的性能,并通过蒙特卡罗模拟验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-based Bayesian spectrum sensing over α-κ-μ fading channels
In this paper, we consider the problem of energy detection for spectrum sensing over the α-κ-μ fading channel, in a Bayesian framework. The α-κ-μ fading distribution includes popular models such as Rayleigh, Rice, Nakagami-m, Weibull, one-sided Gaussian, α-μ, κ-μ and κ-μ extreme distributions as special cases. We present a fast-converging infinite series expression for the probability of overall error, i.e., the convex combination of probability of false-alarm and probability of signal detection. We also present an analysis on optimal detection threshold that minimizes the probability of error. We discuss the performance of our detector for various values of the fading parameters through numerical techniques and validate our analysis through Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信