metoocean预测使用Hadoop, Spark和R

Sumayema Kabir Ricky, L. Rahim
{"title":"metoocean预测使用Hadoop, Spark和R","authors":"Sumayema Kabir Ricky, L. Rahim","doi":"10.1109/ICCOINS49721.2021.9497204","DOIUrl":null,"url":null,"abstract":"This project is the development of an analysis system for historical Metocean Data. It is a single page reactive web application with shiny web UI package of R containing forecasting model, ARIMA and two ML algorithms, Linear Regression and H2O AutoML developed with R for the variables of Metocean data stored in HDFS of a virtual Hadoop cluster and spark is integrated to make the computations happen in-memory. The predictions is compared to the actual data to see its correctness with RMSE. Performance difference of the application deployed on desktop and on the server is also discussed. The application performs better when running in the server than on desktop.","PeriodicalId":245662,"journal":{"name":"2021 International Conference on Computer & Information Sciences (ICCOINS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metocean Prediction using Hadoop, Spark & R\",\"authors\":\"Sumayema Kabir Ricky, L. Rahim\",\"doi\":\"10.1109/ICCOINS49721.2021.9497204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project is the development of an analysis system for historical Metocean Data. It is a single page reactive web application with shiny web UI package of R containing forecasting model, ARIMA and two ML algorithms, Linear Regression and H2O AutoML developed with R for the variables of Metocean data stored in HDFS of a virtual Hadoop cluster and spark is integrated to make the computations happen in-memory. The predictions is compared to the actual data to see its correctness with RMSE. Performance difference of the application deployed on desktop and on the server is also discussed. The application performs better when running in the server than on desktop.\",\"PeriodicalId\":245662,\"journal\":{\"name\":\"2021 International Conference on Computer & Information Sciences (ICCOINS)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computer & Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS49721.2021.9497204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer & Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS49721.2021.9497204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本项目是开发一个历史海洋气象数据分析系统。它是一个单页响应式web应用程序,具有闪亮的R web UI包,包含预测模型,ARIMA和两种ML算法,线性回归和H2O AutoML,用R开发,用于存储在虚拟Hadoop集群的HDFS中的Metocean数据的变量,并集成spark使计算发生在内存中。将预测与实际数据进行比较,以查看其与RMSE的正确性。还讨论了部署在桌面和服务器上的应用程序的性能差异。应用程序在服务器上运行时比在桌面上运行时性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metocean Prediction using Hadoop, Spark & R
This project is the development of an analysis system for historical Metocean Data. It is a single page reactive web application with shiny web UI package of R containing forecasting model, ARIMA and two ML algorithms, Linear Regression and H2O AutoML developed with R for the variables of Metocean data stored in HDFS of a virtual Hadoop cluster and spark is integrated to make the computations happen in-memory. The predictions is compared to the actual data to see its correctness with RMSE. Performance difference of the application deployed on desktop and on the server is also discussed. The application performs better when running in the server than on desktop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信