湍流气溶胶中腐蚀性形成的路径

J. Meibohm, Vikas Pandey, Akshay Bhatnagar, K. Gustavsson, D. Mitra, P. Perlekar, B. Mehlig
{"title":"湍流气溶胶中腐蚀性形成的路径","authors":"J. Meibohm, Vikas Pandey, Akshay Bhatnagar, K. Gustavsson, D. Mitra, P. Perlekar, B. Mehlig","doi":"10.1103/PhysRevFluids.6.L062302","DOIUrl":null,"url":null,"abstract":"The dynamics of small yet heavy, identical particles in turbulence exhibits singularities, called caustics, that lead to large fluctuations in the spatial particle-number density, and in collision velocities. For large particle inertia the fluid velocity at the particle position is essentially a white-noise signal and caustic formation is analogous to Kramers escape. Here we show that caustic formation at small particle inertia is different. Caustics tend to form in the vicinity of particle trajectories that experience a specific history of fluid-velocity gradients, characterised by low vorticity and violent strains exceeding a large threshold. We develop a theory that explains our findings in terms of an optimal path to caustic formation, that is approached in the small inertia limit.","PeriodicalId":328276,"journal":{"name":"arXiv: Fluid Dynamics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Paths to caustic formation in turbulent aerosols\",\"authors\":\"J. Meibohm, Vikas Pandey, Akshay Bhatnagar, K. Gustavsson, D. Mitra, P. Perlekar, B. Mehlig\",\"doi\":\"10.1103/PhysRevFluids.6.L062302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of small yet heavy, identical particles in turbulence exhibits singularities, called caustics, that lead to large fluctuations in the spatial particle-number density, and in collision velocities. For large particle inertia the fluid velocity at the particle position is essentially a white-noise signal and caustic formation is analogous to Kramers escape. Here we show that caustic formation at small particle inertia is different. Caustics tend to form in the vicinity of particle trajectories that experience a specific history of fluid-velocity gradients, characterised by low vorticity and violent strains exceeding a large threshold. We develop a theory that explains our findings in terms of an optimal path to caustic formation, that is approached in the small inertia limit.\",\"PeriodicalId\":328276,\"journal\":{\"name\":\"arXiv: Fluid Dynamics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevFluids.6.L062302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevFluids.6.L062302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

小而重的相同粒子在湍流中的动力学表现出奇异性,称为焦散,导致空间粒子数密度和碰撞速度的大幅波动。对于大粒子惯性,粒子位置处的流体速度本质上是一个白噪声信号,碱散的形成类似于克莱默斯逃逸。在这里,我们证明了在小颗粒惯性下的焦散形成是不同的。焦散倾向于在经历特定流体速度梯度历史的粒子轨迹附近形成,其特征是低涡度和超过大阈值的剧烈应变。我们发展了一个理论来解释我们的发现,在一个最佳路径的苛性形成,这是在小惯性极限接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paths to caustic formation in turbulent aerosols
The dynamics of small yet heavy, identical particles in turbulence exhibits singularities, called caustics, that lead to large fluctuations in the spatial particle-number density, and in collision velocities. For large particle inertia the fluid velocity at the particle position is essentially a white-noise signal and caustic formation is analogous to Kramers escape. Here we show that caustic formation at small particle inertia is different. Caustics tend to form in the vicinity of particle trajectories that experience a specific history of fluid-velocity gradients, characterised by low vorticity and violent strains exceeding a large threshold. We develop a theory that explains our findings in terms of an optimal path to caustic formation, that is approached in the small inertia limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信