为什么替代PCA能提供更好的人脸识别性能

I. Wijaya, K. Uchimura, Zhencheng Hu
{"title":"为什么替代PCA能提供更好的人脸识别性能","authors":"I. Wijaya, K. Uchimura, Zhencheng Hu","doi":"10.1109/WIAMIS.2009.5031454","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative to PCA technique, called as APCA, which uses within class scatter rather than global covariance matrix. The APCA technique produces better features cluster than does common PCA (CPCA) because it keep the null spaces which contain good discriminant information. The proposed technique achieves better performance for both recognition rate and accuracy parameters than those of CPCA when it was tested using several databases (ITS-LAB., INDIA, ORL, and FERET).","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Why the alternative PCA provides better performance for face recognition\",\"authors\":\"I. Wijaya, K. Uchimura, Zhencheng Hu\",\"doi\":\"10.1109/WIAMIS.2009.5031454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative to PCA technique, called as APCA, which uses within class scatter rather than global covariance matrix. The APCA technique produces better features cluster than does common PCA (CPCA) because it keep the null spaces which contain good discriminant information. The proposed technique achieves better performance for both recognition rate and accuracy parameters than those of CPCA when it was tested using several databases (ITS-LAB., INDIA, ORL, and FERET).\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了PCA技术的一种替代方法,称为APCA,它使用类内散点而不是全局协方差矩阵。由于APCA技术保留了包含良好判别信息的零空间,因此产生了比普通PCA (CPCA)更好的特征聚类。通过多个数据库(ITS-LAB)的测试,该方法在识别率和准确率参数上均优于CPCA方法。,印度,ORL和FERET)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why the alternative PCA provides better performance for face recognition
This paper presents an alternative to PCA technique, called as APCA, which uses within class scatter rather than global covariance matrix. The APCA technique produces better features cluster than does common PCA (CPCA) because it keep the null spaces which contain good discriminant information. The proposed technique achieves better performance for both recognition rate and accuracy parameters than those of CPCA when it was tested using several databases (ITS-LAB., INDIA, ORL, and FERET).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信