{"title":"关于狄龙型指数的向量弯曲函数","authors":"Lucien Lapierre, P. Lisoněk","doi":"10.1109/ISIT.2016.7541347","DOIUrl":null,"url":null,"abstract":"We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On vectorial bent functions with Dillon-type exponents\",\"authors\":\"Lucien Lapierre, P. Lisoněk\",\"doi\":\"10.1109/ISIT.2016.7541347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On vectorial bent functions with Dillon-type exponents
We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.