关于狄龙型指数的向量弯曲函数

Lucien Lapierre, P. Lisoněk
{"title":"关于狄龙型指数的向量弯曲函数","authors":"Lucien Lapierre, P. Lisoněk","doi":"10.1109/ISIT.2016.7541347","DOIUrl":null,"url":null,"abstract":"We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On vectorial bent functions with Dillon-type exponents\",\"authors\":\"Lucien Lapierre, P. Lisoněk\",\"doi\":\"10.1109/ISIT.2016.7541347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了具有狄龙指数的向量弯曲函数。这些函数因其在任何时候被弯曲都是超弯曲的,并且它们在同一域上的所有弯曲函数中达到可能的最高代数度而受到人们的关注。在低维情况下,当这些函数映射到GF(4)时,我们确定了它们的最简单可能形式。证明了映射到大上域的某些单项式和多项式弯曲函数的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On vectorial bent functions with Dillon-type exponents
We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信