非马尔可夫模型分析中DBM域上状态密度函数的闭合形式推导

A. Donaldson, Alice Miller, D. Parker
{"title":"非马尔可夫模型分析中DBM域上状态密度函数的闭合形式推导","authors":"A. Donaldson, Alice Miller, D. Parker","doi":"10.1109/QEST.2007.23","DOIUrl":null,"url":null,"abstract":"Quantitative evaluation of models allowing multiple concurrent non-exponential timers requires enumeration and analysis of non-Markovian processes. In general, these processes may be not isomorphic to those obtained from the corresponding untimed models, due to implicit precedences induced by timing constraints on concurrent events. The analysis of stochastic Time Petri Nets (sTPNs) copes with the problem by covering the state space with stochastic classes, which extend Difference Bounds Matrix (DBM) theory with a state density function providing a measure of probability for the variety of states collected within a class. In this paper, we extend the theory of stochastic classes providing a close form calculus for the derivation of the state density function under the assumption that all transitions have an expolynomial distribution. The characterization provides insight on how the form of the state density function evolves when transitions fire and the stochastic class accumulates memory and provide the basis for an efficient implementation which drastically reduces analysis complexity.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Close form derivation of state-density functions over DBM domains in the analysis of non-Markovian models\",\"authors\":\"A. Donaldson, Alice Miller, D. Parker\",\"doi\":\"10.1109/QEST.2007.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative evaluation of models allowing multiple concurrent non-exponential timers requires enumeration and analysis of non-Markovian processes. In general, these processes may be not isomorphic to those obtained from the corresponding untimed models, due to implicit precedences induced by timing constraints on concurrent events. The analysis of stochastic Time Petri Nets (sTPNs) copes with the problem by covering the state space with stochastic classes, which extend Difference Bounds Matrix (DBM) theory with a state density function providing a measure of probability for the variety of states collected within a class. In this paper, we extend the theory of stochastic classes providing a close form calculus for the derivation of the state density function under the assumption that all transitions have an expolynomial distribution. The characterization provides insight on how the form of the state density function evolves when transitions fire and the stochastic class accumulates memory and provide the basis for an efficient implementation which drastically reduces analysis complexity.\",\"PeriodicalId\":249627,\"journal\":{\"name\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QEST.2007.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

允许多个并发非指数计时器的模型的定量评估需要枚举和分析非马尔可夫过程。通常,由于并发事件的时间约束导致的隐式优先级,这些过程可能与从相应的非定时模型中获得的过程不同构。随机时间Petri网(stpn)的分析通过用随机类覆盖状态空间来解决这个问题,它扩展了差分界矩阵(DBM)理论,用状态密度函数为一个类中收集的状态的变化提供了一个概率度量。本文扩展了随机类的理论,在所有跃迁都具有多项式分布的假设下,给出了状态密度函数的推导的近似演算。该表征提供了关于状态密度函数的形式在转换发生和随机类积累内存时如何演变的见解,并为有效实现提供了基础,从而大大降低了分析的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Close form derivation of state-density functions over DBM domains in the analysis of non-Markovian models
Quantitative evaluation of models allowing multiple concurrent non-exponential timers requires enumeration and analysis of non-Markovian processes. In general, these processes may be not isomorphic to those obtained from the corresponding untimed models, due to implicit precedences induced by timing constraints on concurrent events. The analysis of stochastic Time Petri Nets (sTPNs) copes with the problem by covering the state space with stochastic classes, which extend Difference Bounds Matrix (DBM) theory with a state density function providing a measure of probability for the variety of states collected within a class. In this paper, we extend the theory of stochastic classes providing a close form calculus for the derivation of the state density function under the assumption that all transitions have an expolynomial distribution. The characterization provides insight on how the form of the state density function evolves when transitions fire and the stochastic class accumulates memory and provide the basis for an efficient implementation which drastically reduces analysis complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信