边缘网络中的自适应物联网业务配置优化

Mengyu Sun, Zhangbing Zhou, Walid Gaaloul
{"title":"边缘网络中的自适应物联网业务配置优化","authors":"Mengyu Sun, Zhangbing Zhou, Walid Gaaloul","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484465","DOIUrl":null,"url":null,"abstract":"The collaboration of Internet of Things (IoT) devices promotes the computation at the network edge to satisfy latency-sensitive requests. The functionalities provided by IoT devices are encapsulated as IoT services, and the satisfaction of requests is reduced to the composition of services. Due to the hard-to-prediction of forthcoming requests, an adaptive service configuration is essential, when latency constraints are satisfied by composed services. This problem is formulated as a continuous time Markov decision process model constructed with updating system states, taking actions and assessing rewards constantly. A temporal-difference learning approach is developed to optimize the configuration, while taking long-term service latency and energy efficiency into consideration. Experimental results show that our approach outperforms the state-of-art’s techniques for achieving close-to-optimal service configurations.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive IoT Service Configuration Optimization in Edge Networks\",\"authors\":\"Mengyu Sun, Zhangbing Zhou, Walid Gaaloul\",\"doi\":\"10.1109/INFOCOMWKSHPS51825.2021.9484465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collaboration of Internet of Things (IoT) devices promotes the computation at the network edge to satisfy latency-sensitive requests. The functionalities provided by IoT devices are encapsulated as IoT services, and the satisfaction of requests is reduced to the composition of services. Due to the hard-to-prediction of forthcoming requests, an adaptive service configuration is essential, when latency constraints are satisfied by composed services. This problem is formulated as a continuous time Markov decision process model constructed with updating system states, taking actions and assessing rewards constantly. A temporal-difference learning approach is developed to optimize the configuration, while taking long-term service latency and energy efficiency into consideration. Experimental results show that our approach outperforms the state-of-art’s techniques for achieving close-to-optimal service configurations.\",\"PeriodicalId\":109588,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)设备的协作促进了网络边缘的计算,以满足对延迟敏感的请求。物联网设备提供的功能被封装为物联网服务,请求的满足被简化为服务的组合。由于难以预测即将到来的请求,当组合服务满足延迟约束时,自适应服务配置是必不可少的。该问题被表述为一个连续时间马尔可夫决策过程模型,该模型由不断更新系统状态、不断采取行动和评估奖励构建而成。在考虑长期服务延迟和能源效率的情况下,提出了一种时间差学习方法来优化配置。实验结果表明,我们的方法在实现接近最优的服务配置方面优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive IoT Service Configuration Optimization in Edge Networks
The collaboration of Internet of Things (IoT) devices promotes the computation at the network edge to satisfy latency-sensitive requests. The functionalities provided by IoT devices are encapsulated as IoT services, and the satisfaction of requests is reduced to the composition of services. Due to the hard-to-prediction of forthcoming requests, an adaptive service configuration is essential, when latency constraints are satisfied by composed services. This problem is formulated as a continuous time Markov decision process model constructed with updating system states, taking actions and assessing rewards constantly. A temporal-difference learning approach is developed to optimize the configuration, while taking long-term service latency and energy efficiency into consideration. Experimental results show that our approach outperforms the state-of-art’s techniques for achieving close-to-optimal service configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信