基本遗传算法中的高概率突变

Nicolae-Eugen Croitoru
{"title":"基本遗传算法中的高概率突变","authors":"Nicolae-Eugen Croitoru","doi":"10.1109/SYNASC.2014.48","DOIUrl":null,"url":null,"abstract":"Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-Probability Mutation in Basic Genetic Algorithms\",\"authors\":\"Nicolae-Eugen Croitoru\",\"doi\":\"10.1109/SYNASC.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

遗传算法通常使用低概率变异算子。为了提高它们的性能,本文提出了一种具有非常高突变率(≈95%)的遗传算法的研究。相对于低概率(≈1%)突变遗传算法,在两大类问题上进行了比较:数值函数(众所周知的测试函数,如Rosenbrock's, Six-Hump Camel Back)和位块函数(如Royal Road, Trap函数)。大量的实验运行结合参数的变化为比较提供了统计学意义。发现高概率突变在大多数测试函数上表现良好,在某些函数上表现优于低概率突变。然后,这些结果在动态对偶编码和选择压力减少方面进行了解释,并将其置于没有免费午餐定理的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Probability Mutation in Basic Genetic Algorithms
Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信