{"title":"基本遗传算法中的高概率突变","authors":"Nicolae-Eugen Croitoru","doi":"10.1109/SYNASC.2014.48","DOIUrl":null,"url":null,"abstract":"Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-Probability Mutation in Basic Genetic Algorithms\",\"authors\":\"Nicolae-Eugen Croitoru\",\"doi\":\"10.1109/SYNASC.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Probability Mutation in Basic Genetic Algorithms
Customarily, Genetic Algorithms use lowprobability mutation operators. In an effort to increase their performance, this paper presents a study of Genetic Algorithms with very high mutation rates (≈ 95%) . A comparison is drawn, relative to the low-probability (≈ 1%) mutation GA, on two large classes of problems: numerical functions (well-known test functions such as Rosenbrock's, Six-Hump Camel Back) and bit-block functions (e.g. Royal Road, Trap Functions). A large number of experimental runs combined with parameter variation provide statistical significance for the comparison. The high-probability mutation is found to perform well on most tested functions, outperforming low-probability mutation on some of them. These results are then explained in terms of dynamic dual encoding and selection pressure reduction, and placed in the context of the No Free Lunch theorem.