M. Francisco, Stephen Simpson, Lambros Pezoulas, Changcheng Huang, I. Lambadaris, William St-Arnaud
{"title":"光网络中的域间路由","authors":"M. Francisco, Stephen Simpson, Lambros Pezoulas, Changcheng Huang, I. Lambadaris, William St-Arnaud","doi":"10.1117/12.436052","DOIUrl":null,"url":null,"abstract":"This paper has outlined a method (called OBGP) of extending BGP to support lightpath setup and management across an optical network. The development of OBGP has been discussed by reviewing current BGP behavior and design requirements for OBGP. An implementation of OBGP using simulation tools has been presented, along with initial test results, which have shown that a seamless migration from BGP to OBGP is possible.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Interdomain routing in optical networks\",\"authors\":\"M. Francisco, Stephen Simpson, Lambros Pezoulas, Changcheng Huang, I. Lambadaris, William St-Arnaud\",\"doi\":\"10.1117/12.436052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper has outlined a method (called OBGP) of extending BGP to support lightpath setup and management across an optical network. The development of OBGP has been discussed by reviewing current BGP behavior and design requirements for OBGP. An implementation of OBGP using simulation tools has been presented, along with initial test results, which have shown that a seamless migration from BGP to OBGP is possible.\",\"PeriodicalId\":187370,\"journal\":{\"name\":\"OptiComm: Optical Networking and Communications Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OptiComm: Optical Networking and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.436052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.436052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper has outlined a method (called OBGP) of extending BGP to support lightpath setup and management across an optical network. The development of OBGP has been discussed by reviewing current BGP behavior and design requirements for OBGP. An implementation of OBGP using simulation tools has been presented, along with initial test results, which have shown that a seamless migration from BGP to OBGP is possible.