{"title":"字符串多原型分类的学习模型","authors":"R. Cárdenas","doi":"10.1109/ICPR.2004.49","DOIUrl":null,"url":null,"abstract":"An iterative learning method to update labeled string prototypes for a 1-nearest prototype (1-np) classification is introduced. Given a (typically reduced) set of initial string prototypes and a training set, it iteratively updates prototypes to better discriminate training samples. The update rule, which is based on the edit distance, adjusts a prototype by removing those local differences which are both frequent with respect to same-class closer training strings and infrequent with respect to different-class closer training strings. Closer training strings are defined by unsupervised clustering. The process continues until prototypes converge. Its main innovation is to provide a non-random local update rule to \"move\" a string prototype towards a number of string samples. A series of learning/classification experiments show a better 1-np performance of the updated prototypes with respect to the initial ones, that were originally selected to guarantee a good classification.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A learning model for multiple-prototype classification of strings\",\"authors\":\"R. Cárdenas\",\"doi\":\"10.1109/ICPR.2004.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An iterative learning method to update labeled string prototypes for a 1-nearest prototype (1-np) classification is introduced. Given a (typically reduced) set of initial string prototypes and a training set, it iteratively updates prototypes to better discriminate training samples. The update rule, which is based on the edit distance, adjusts a prototype by removing those local differences which are both frequent with respect to same-class closer training strings and infrequent with respect to different-class closer training strings. Closer training strings are defined by unsupervised clustering. The process continues until prototypes converge. Its main innovation is to provide a non-random local update rule to \\\"move\\\" a string prototype towards a number of string samples. A series of learning/classification experiments show a better 1-np performance of the updated prototypes with respect to the initial ones, that were originally selected to guarantee a good classification.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A learning model for multiple-prototype classification of strings
An iterative learning method to update labeled string prototypes for a 1-nearest prototype (1-np) classification is introduced. Given a (typically reduced) set of initial string prototypes and a training set, it iteratively updates prototypes to better discriminate training samples. The update rule, which is based on the edit distance, adjusts a prototype by removing those local differences which are both frequent with respect to same-class closer training strings and infrequent with respect to different-class closer training strings. Closer training strings are defined by unsupervised clustering. The process continues until prototypes converge. Its main innovation is to provide a non-random local update rule to "move" a string prototype towards a number of string samples. A series of learning/classification experiments show a better 1-np performance of the updated prototypes with respect to the initial ones, that were originally selected to guarantee a good classification.