在统计不确定的条件下对矩阵观测预测的保证均方根估计

O. Nakonechnyi, Grygoriy Kudin, P. Zinko, T. Zinko
{"title":"在统计不确定的条件下对矩阵观测预测的保证均方根估计","authors":"O. Nakonechnyi, Grygoriy Kudin, P. Zinko, T. Zinko","doi":"10.20535/srit.2308-8893.2023.2.07","DOIUrl":null,"url":null,"abstract":"We investigate the problem of linear estimation of unknown mathematical expectations based on observations of realizations of random matrix sequences. Constructive mathematical methods have been developed for finding linear guaranteed RMS estimates of unknown non-stationary parameters of average values based on observations of realizations of random matrix sequences. It is shown that such guaranteed estimates are obtained either as solutions to boundary value problems for systems of linear differential equations or as solutions to the corresponding Cauchy problems. We establish the form and look for errors for the guaranteed RMS quasi-minimax estimates of the special forecast vector and parameters of unknown average values. In the presence of small perturbations of known matrices in the model of matrix observations, quasi-minimax RMS estimates are found, and their guaranteed RMS errors are obtained in the first approximation of the small parameter method. Two test examples for calculating the guaranteed root mean square estimates and their errors are given.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guaranteed root-mean-square estimates of the forecast of matrix observations under conditions of statistical uncertainty\",\"authors\":\"O. Nakonechnyi, Grygoriy Kudin, P. Zinko, T. Zinko\",\"doi\":\"10.20535/srit.2308-8893.2023.2.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of linear estimation of unknown mathematical expectations based on observations of realizations of random matrix sequences. Constructive mathematical methods have been developed for finding linear guaranteed RMS estimates of unknown non-stationary parameters of average values based on observations of realizations of random matrix sequences. It is shown that such guaranteed estimates are obtained either as solutions to boundary value problems for systems of linear differential equations or as solutions to the corresponding Cauchy problems. We establish the form and look for errors for the guaranteed RMS quasi-minimax estimates of the special forecast vector and parameters of unknown average values. In the presence of small perturbations of known matrices in the model of matrix observations, quasi-minimax RMS estimates are found, and their guaranteed RMS errors are obtained in the first approximation of the small parameter method. Two test examples for calculating the guaranteed root mean square estimates and their errors are given.\",\"PeriodicalId\":330635,\"journal\":{\"name\":\"System research and information technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System research and information technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/srit.2308-8893.2023.2.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2023.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于随机矩阵序列实现的未知数学期望的线性估计问题。基于对随机矩阵序列实现的观测,提出了一种构造性的数学方法来寻找未知非平稳参数均值的线性保证均方根估计。证明了这种保证估计既可以作为线性微分方程组边值问题的解,也可以作为相应的柯西问题的解得到。我们建立了未知平均值的特殊预测向量和参数的保证均方根拟极小极大估计的形式,并寻找误差。在矩阵观测模型中存在已知矩阵的小扰动时,找到了拟极小极大均方根估计,并在小参数法的一阶近似中得到了它们的保证均方根误差。给出了计算保证均方根估计及其误差的两个测试实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guaranteed root-mean-square estimates of the forecast of matrix observations under conditions of statistical uncertainty
We investigate the problem of linear estimation of unknown mathematical expectations based on observations of realizations of random matrix sequences. Constructive mathematical methods have been developed for finding linear guaranteed RMS estimates of unknown non-stationary parameters of average values based on observations of realizations of random matrix sequences. It is shown that such guaranteed estimates are obtained either as solutions to boundary value problems for systems of linear differential equations or as solutions to the corresponding Cauchy problems. We establish the form and look for errors for the guaranteed RMS quasi-minimax estimates of the special forecast vector and parameters of unknown average values. In the presence of small perturbations of known matrices in the model of matrix observations, quasi-minimax RMS estimates are found, and their guaranteed RMS errors are obtained in the first approximation of the small parameter method. Two test examples for calculating the guaranteed root mean square estimates and their errors are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信