没有$((n,K,d< 127))$代码可以违反量子汉明界

E. Dallas, Faidon Andreadakis, Daniel A. Lidar
{"title":"没有$((n,K,d< 127))$代码可以违反量子汉明界","authors":"E. Dallas, Faidon Andreadakis, Daniel A. Lidar","doi":"10.1109/MBITS.2023.3262219","DOIUrl":null,"url":null,"abstract":"It is well-known that nondegenerate quantum error correcting codes (QECCs) are constrained by a quantum version of the Hamming bound. Whether degenerate codes also obey such a bound, however, remains a long-standing question with practical implications for the efficacy of QECCs. We employ a combination of previously derived bounds on QECCs to demonstrate that a subset of all codes must obey the quantum Hamming bound. Specifically, we combine an analytical bound due to Rains with a numerical bound due to Li and Xing to show that no $((n,K,d))$((n,K,d)) code with $d< 127$d<127 can violate the quantum Hamming bound.","PeriodicalId":448036,"journal":{"name":"IEEE BITS the Information Theory Magazine","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"No $((n,K,d< 127))$ Code Can Violate the Quantum Hamming Bound\",\"authors\":\"E. Dallas, Faidon Andreadakis, Daniel A. Lidar\",\"doi\":\"10.1109/MBITS.2023.3262219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that nondegenerate quantum error correcting codes (QECCs) are constrained by a quantum version of the Hamming bound. Whether degenerate codes also obey such a bound, however, remains a long-standing question with practical implications for the efficacy of QECCs. We employ a combination of previously derived bounds on QECCs to demonstrate that a subset of all codes must obey the quantum Hamming bound. Specifically, we combine an analytical bound due to Rains with a numerical bound due to Li and Xing to show that no $((n,K,d))$((n,K,d)) code with $d< 127$d<127 can violate the quantum Hamming bound.\",\"PeriodicalId\":448036,\"journal\":{\"name\":\"IEEE BITS the Information Theory Magazine\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE BITS the Information Theory Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MBITS.2023.3262219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE BITS the Information Theory Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MBITS.2023.3262219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,非简并量子纠错码(QECCs)受到量子版汉明界的约束。然而,简并码是否也遵守这样的界限,仍然是一个长期存在的问题,对QECCs的有效性具有实际意义。我们使用先前导出的QECCs界的组合来证明所有码的子集必须服从量子汉明界。具体地说,我们将Rains的解析界与Li和Xing的数值界结合起来,证明$((n,K,d))$((n,K,d)) $($d<127 $d<127)的码不能违反量子汉明界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No $((n,K,d< 127))$ Code Can Violate the Quantum Hamming Bound
It is well-known that nondegenerate quantum error correcting codes (QECCs) are constrained by a quantum version of the Hamming bound. Whether degenerate codes also obey such a bound, however, remains a long-standing question with practical implications for the efficacy of QECCs. We employ a combination of previously derived bounds on QECCs to demonstrate that a subset of all codes must obey the quantum Hamming bound. Specifically, we combine an analytical bound due to Rains with a numerical bound due to Li and Xing to show that no $((n,K,d))$((n,K,d)) code with $d< 127$d<127 can violate the quantum Hamming bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信