从交通传感器数据到语义交通描述:试验区自动驾驶巴登- 符腾堡州数据集(TAF-BW数据集)

Maximilian Zipfl, Tobias Fleck, M. Zofka, Johann Marius Zöllner
{"title":"从交通传感器数据到语义交通描述:试验区自动驾驶巴登- <s:1>符腾堡州数据集(TAF-BW数据集)","authors":"Maximilian Zipfl, Tobias Fleck, M. Zofka, Johann Marius Zöllner","doi":"10.1109/ITSC45102.2020.9294539","DOIUrl":null,"url":null,"abstract":"The validation and verification (V&V) of highly automated driving depends on reference data in the different steps of the development process. While there exist a variety of datasets to optimize and benchmark perception algorithms, large trajectory datasets with complex interactions between traffic participants are quite rare. Such data offers the opportunity to derive virtual traffic scenarios and road user behaviour models that can be used to evaluate in-vehicle perception systems as well as decision making modules.We present the Test Area Autonomous Driving BadenWürttemberg (TAF-BW) Dataset that provides globally referenced road user trajectories extended with context information like traffic light signals and high definition map data recorded in the test area. We point out an exemplary application that becomes possible with the dataset: building semantic scene models that can be used for criticality assessment in traffic scenes. We conclude with a short outlook on future extensions.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"From Traffic Sensor Data To Semantic Traffic Descriptions: The Test Area Autonomous Driving Baden-Württemberg Dataset (TAF-BW Dataset)\",\"authors\":\"Maximilian Zipfl, Tobias Fleck, M. Zofka, Johann Marius Zöllner\",\"doi\":\"10.1109/ITSC45102.2020.9294539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The validation and verification (V&V) of highly automated driving depends on reference data in the different steps of the development process. While there exist a variety of datasets to optimize and benchmark perception algorithms, large trajectory datasets with complex interactions between traffic participants are quite rare. Such data offers the opportunity to derive virtual traffic scenarios and road user behaviour models that can be used to evaluate in-vehicle perception systems as well as decision making modules.We present the Test Area Autonomous Driving BadenWürttemberg (TAF-BW) Dataset that provides globally referenced road user trajectories extended with context information like traffic light signals and high definition map data recorded in the test area. We point out an exemplary application that becomes possible with the dataset: building semantic scene models that can be used for criticality assessment in traffic scenes. We conclude with a short outlook on future extensions.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

高度自动驾驶的验证和验证(V&V)依赖于开发过程中不同步骤的参考数据。虽然存在各种各样的数据集来优化和基准感知算法,但具有交通参与者之间复杂交互的大型轨迹数据集非常罕见。这些数据提供了获得虚拟交通场景和道路用户行为模型的机会,这些模型可用于评估车载感知系统和决策模块。我们展示了测试区域自动驾驶巴登堡州(TAF-BW)数据集,该数据集提供了全球参考的道路用户轨迹,扩展了交通信号灯等背景信息和测试区域记录的高清地图数据。我们指出了该数据集的一个示例应用:构建可用于交通场景中临界性评估的语义场景模型。最后,我们对未来的扩展做一个简短的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Traffic Sensor Data To Semantic Traffic Descriptions: The Test Area Autonomous Driving Baden-Württemberg Dataset (TAF-BW Dataset)
The validation and verification (V&V) of highly automated driving depends on reference data in the different steps of the development process. While there exist a variety of datasets to optimize and benchmark perception algorithms, large trajectory datasets with complex interactions between traffic participants are quite rare. Such data offers the opportunity to derive virtual traffic scenarios and road user behaviour models that can be used to evaluate in-vehicle perception systems as well as decision making modules.We present the Test Area Autonomous Driving BadenWürttemberg (TAF-BW) Dataset that provides globally referenced road user trajectories extended with context information like traffic light signals and high definition map data recorded in the test area. We point out an exemplary application that becomes possible with the dataset: building semantic scene models that can be used for criticality assessment in traffic scenes. We conclude with a short outlook on future extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信