Mark Fuglem, Jan Thijssen, Paul Stuckey, Somchat Suwan, Qianran Zhang
{"title":"确定海冰和波浪联合作用的概率方法","authors":"Mark Fuglem, Jan Thijssen, Paul Stuckey, Somchat Suwan, Qianran Zhang","doi":"10.4043/29167-MS","DOIUrl":null,"url":null,"abstract":"\n Design of offshore structures for arctic and subarctic regions requires consideration of wave, wind and ice actions. If individual actions are not mutually exclusive, then combined actions also need consideration. ISO 19906 recommends that, when possible, extreme level combined actions should be determined based on the joint probability distribution of the actions. As an alternative, ISO 19906 provides a framework where a user can determine principal and companion extreme actions independently, and sum these with calibrated combination factors applied. While the combination factors in ISO 19906 were calibrated over a range of conditions and platforms, site-specific information is not taken into account when applying the method. In this paper, a procedure is presented for determining extreme level combined actions for sea ice and waves based on site-specific sea ice and wave information, accounting for the joint probability distribution of the actions. The procedure is demonstrated for an example fixed structure on the Grand Banks off Canada's east coast. The results are compared with extreme actions determined using the ISO 19906 combination factors.","PeriodicalId":391061,"journal":{"name":"Day 3 Wed, November 07, 2018","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Approach to Determine Combined Sea Ice and Wave Actions\",\"authors\":\"Mark Fuglem, Jan Thijssen, Paul Stuckey, Somchat Suwan, Qianran Zhang\",\"doi\":\"10.4043/29167-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Design of offshore structures for arctic and subarctic regions requires consideration of wave, wind and ice actions. If individual actions are not mutually exclusive, then combined actions also need consideration. ISO 19906 recommends that, when possible, extreme level combined actions should be determined based on the joint probability distribution of the actions. As an alternative, ISO 19906 provides a framework where a user can determine principal and companion extreme actions independently, and sum these with calibrated combination factors applied. While the combination factors in ISO 19906 were calibrated over a range of conditions and platforms, site-specific information is not taken into account when applying the method. In this paper, a procedure is presented for determining extreme level combined actions for sea ice and waves based on site-specific sea ice and wave information, accounting for the joint probability distribution of the actions. The procedure is demonstrated for an example fixed structure on the Grand Banks off Canada's east coast. The results are compared with extreme actions determined using the ISO 19906 combination factors.\",\"PeriodicalId\":391061,\"journal\":{\"name\":\"Day 3 Wed, November 07, 2018\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 07, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29167-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 07, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29167-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Approach to Determine Combined Sea Ice and Wave Actions
Design of offshore structures for arctic and subarctic regions requires consideration of wave, wind and ice actions. If individual actions are not mutually exclusive, then combined actions also need consideration. ISO 19906 recommends that, when possible, extreme level combined actions should be determined based on the joint probability distribution of the actions. As an alternative, ISO 19906 provides a framework where a user can determine principal and companion extreme actions independently, and sum these with calibrated combination factors applied. While the combination factors in ISO 19906 were calibrated over a range of conditions and platforms, site-specific information is not taken into account when applying the method. In this paper, a procedure is presented for determining extreme level combined actions for sea ice and waves based on site-specific sea ice and wave information, accounting for the joint probability distribution of the actions. The procedure is demonstrated for an example fixed structure on the Grand Banks off Canada's east coast. The results are compared with extreme actions determined using the ISO 19906 combination factors.