基于支持向量机的非平衡DNA序列启动子识别二元特征映射规则分析

Robertas Damaševičius
{"title":"基于支持向量机的非平衡DNA序列启动子识别二元特征映射规则分析","authors":"Robertas Damaševičius","doi":"10.1109/IS.2008.4670503","DOIUrl":null,"url":null,"abstract":"Recognition of specific functionally-important DNA sequence fragments is considered one of the most important problems in bioinformatics. One type of such fragments are promoters, i.e., short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. In this paper, a machine learning method, called support vector machine (SVM), is used for classification of DNA sequences and promoter recognition. For optimal classification, 11 rules for mapping of DNA sequences into binary SVM feature space are analyzed. Classification is performed using a power series kernel function. Kernel parameters are optimized using a modification of the Nelder-Mead (downhill simplex) optimization method. The results of classification for drosophila and human sequence datasets are presented.","PeriodicalId":305750,"journal":{"name":"2008 4th International IEEE Conference Intelligent Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analysis of binary feature mapping rules for promoter recognition in imbalanced DNA sequence datasets using Support Vector Machine\",\"authors\":\"Robertas Damaševičius\",\"doi\":\"10.1109/IS.2008.4670503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of specific functionally-important DNA sequence fragments is considered one of the most important problems in bioinformatics. One type of such fragments are promoters, i.e., short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. In this paper, a machine learning method, called support vector machine (SVM), is used for classification of DNA sequences and promoter recognition. For optimal classification, 11 rules for mapping of DNA sequences into binary SVM feature space are analyzed. Classification is performed using a power series kernel function. Kernel parameters are optimized using a modification of the Nelder-Mead (downhill simplex) optimization method. The results of classification for drosophila and human sequence datasets are presented.\",\"PeriodicalId\":305750,\"journal\":{\"name\":\"2008 4th International IEEE Conference Intelligent Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2008.4670503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2008.4670503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

识别具有重要功能的DNA序列片段是生物信息学中最重要的问题之一。这种片段的一种类型是启动子,即位于基因上游的短调控DNA序列。DNA序列中启动子的检测对于成功的基因预测是非常重要的。本文采用支持向量机(SVM)作为机器学习方法,对DNA序列进行分类和启动子识别。为了实现最优分类,分析了DNA序列映射到二值支持向量机特征空间的11条规则。分类是使用幂级数核函数执行的。核参数的优化使用改进的Nelder-Mead(下坡单纯形)优化方法。介绍了果蝇和人类序列数据集的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of binary feature mapping rules for promoter recognition in imbalanced DNA sequence datasets using Support Vector Machine
Recognition of specific functionally-important DNA sequence fragments is considered one of the most important problems in bioinformatics. One type of such fragments are promoters, i.e., short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. In this paper, a machine learning method, called support vector machine (SVM), is used for classification of DNA sequences and promoter recognition. For optimal classification, 11 rules for mapping of DNA sequences into binary SVM feature space are analyzed. Classification is performed using a power series kernel function. Kernel parameters are optimized using a modification of the Nelder-Mead (downhill simplex) optimization method. The results of classification for drosophila and human sequence datasets are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信