利用红外图像序列中的多滤波器组跟踪多个机动点目标

M. Zaveri, U. Desai, S. Merchant
{"title":"利用红外图像序列中的多滤波器组跟踪多个机动点目标","authors":"M. Zaveri, U. Desai, S. Merchant","doi":"10.1109/ICASSP.2003.1202386","DOIUrl":null,"url":null,"abstract":"Performance of any tracking algorithm depends upon the model selected to capture the target dynamics. In real world applications, no a priori knowledge about the target motion is available. Moreover, it could be a maneuvering target. The proposed method is able to track maneuvering or nonmaneuvering multiple point targets with large motion (/spl plusmn/20 pixels) using multiple filter bank in an IR image sequence in the presence of clutter and occlusion due to clouds. The use of multiple filters is not new, but the novel idea here is that it uses single-step decision logic to switch over between filters. Our approach does not use any a priori knowledge about maneuver parameters, nor does it exploit a parameterized nonlinear model for the target trajectories. This is in contrast to: (i) interacting multiple model (IMM) filtering which required the maneuver parameters, and (ii) extended Kalman filter (EKF) or unscented Kalman filter (UKF), both of which require a parameterized model for the trajectories. We compared our approach for target tracking with IMM filtering using EKF and UKF for nonlinear trajectory models. UKF uses the nonlinearity of the target model, where as a first order linearization is used in case of the EKF. RMS for the predicted position error (RMS-PPE) obtained using our proposed methodology is significantly less in case of highly maneuvering target.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tracking multiple maneuvering point targets using multiple filter bank in infrared image sequence\",\"authors\":\"M. Zaveri, U. Desai, S. Merchant\",\"doi\":\"10.1109/ICASSP.2003.1202386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of any tracking algorithm depends upon the model selected to capture the target dynamics. In real world applications, no a priori knowledge about the target motion is available. Moreover, it could be a maneuvering target. The proposed method is able to track maneuvering or nonmaneuvering multiple point targets with large motion (/spl plusmn/20 pixels) using multiple filter bank in an IR image sequence in the presence of clutter and occlusion due to clouds. The use of multiple filters is not new, but the novel idea here is that it uses single-step decision logic to switch over between filters. Our approach does not use any a priori knowledge about maneuver parameters, nor does it exploit a parameterized nonlinear model for the target trajectories. This is in contrast to: (i) interacting multiple model (IMM) filtering which required the maneuver parameters, and (ii) extended Kalman filter (EKF) or unscented Kalman filter (UKF), both of which require a parameterized model for the trajectories. We compared our approach for target tracking with IMM filtering using EKF and UKF for nonlinear trajectory models. UKF uses the nonlinearity of the target model, where as a first order linearization is used in case of the EKF. RMS for the predicted position error (RMS-PPE) obtained using our proposed methodology is significantly less in case of highly maneuvering target.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1202386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1202386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

任何跟踪算法的性能都取决于所选择的捕获目标动态的模型。在实际应用中,没有关于目标运动的先验知识是可用的。此外,它可能是一个机动目标。该方法能够在存在杂波和云遮挡的红外图像序列中使用多滤波器组跟踪大运动(/spl plusmn/20像素)的机动或非机动多点目标。使用多个过滤器并不新鲜,但这里的新颖思想是它使用单步决策逻辑在过滤器之间进行切换。我们的方法不使用任何关于机动参数的先验知识,也不利用目标轨迹的参数化非线性模型。这与:(i)需要机动参数的交互多模型(IMM)滤波和(ii)扩展卡尔曼滤波器(EKF)或无气味卡尔曼滤波器(UKF)形成对比,两者都需要轨迹的参数化模型。我们将我们的目标跟踪方法与非线性轨迹模型中使用EKF和UKF的IMM滤波方法进行了比较。UKF使用目标模型的非线性,而EKF则使用一阶线性化。在高机动目标情况下,采用该方法得到的预测位置误差(RMS- ppe)的均方根值明显小于预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking multiple maneuvering point targets using multiple filter bank in infrared image sequence
Performance of any tracking algorithm depends upon the model selected to capture the target dynamics. In real world applications, no a priori knowledge about the target motion is available. Moreover, it could be a maneuvering target. The proposed method is able to track maneuvering or nonmaneuvering multiple point targets with large motion (/spl plusmn/20 pixels) using multiple filter bank in an IR image sequence in the presence of clutter and occlusion due to clouds. The use of multiple filters is not new, but the novel idea here is that it uses single-step decision logic to switch over between filters. Our approach does not use any a priori knowledge about maneuver parameters, nor does it exploit a parameterized nonlinear model for the target trajectories. This is in contrast to: (i) interacting multiple model (IMM) filtering which required the maneuver parameters, and (ii) extended Kalman filter (EKF) or unscented Kalman filter (UKF), both of which require a parameterized model for the trajectories. We compared our approach for target tracking with IMM filtering using EKF and UKF for nonlinear trajectory models. UKF uses the nonlinearity of the target model, where as a first order linearization is used in case of the EKF. RMS for the predicted position error (RMS-PPE) obtained using our proposed methodology is significantly less in case of highly maneuvering target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信