通过机器学习实现电机的可靠热监测

P. Kakosimos
{"title":"通过机器学习实现电机的可靠热监测","authors":"P. Kakosimos","doi":"10.1109/ICPHM57936.2023.10194194","DOIUrl":null,"url":null,"abstract":"The electrification of powertrains is rising as the objective for a more viable future is intensified. To ensure continuous and reliable operation without undesirable malfunctions, it is essential to monitor the internal temperatures of machines and keep them within safe operating limits. Conventional modeling methods can be complex and usually require expert knowledge. With the amount of data collected these days, it is possible to use information models to assess thermal behaviors. This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines. Experimental data was collected under specific operating conditions, and three machine-learning models have been developed. The optimal configuration for each approach was determined through rigorous hyperparameter searches, and the models were evaluated using a variety of metrics. The three solutions performed well in monitoring the condition of the machine even under transient operation, highlighting the potential of data-driven methods in improving the thermal management.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Thermal Monitoring of Electric Machines through Machine Learning\",\"authors\":\"P. Kakosimos\",\"doi\":\"10.1109/ICPHM57936.2023.10194194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrification of powertrains is rising as the objective for a more viable future is intensified. To ensure continuous and reliable operation without undesirable malfunctions, it is essential to monitor the internal temperatures of machines and keep them within safe operating limits. Conventional modeling methods can be complex and usually require expert knowledge. With the amount of data collected these days, it is possible to use information models to assess thermal behaviors. This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines. Experimental data was collected under specific operating conditions, and three machine-learning models have been developed. The optimal configuration for each approach was determined through rigorous hyperparameter searches, and the models were evaluated using a variety of metrics. The three solutions performed well in monitoring the condition of the machine even under transient operation, highlighting the potential of data-driven methods in improving the thermal management.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10194194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着更可行的未来目标的加强,动力系统的电气化正在上升。为了确保连续可靠地运行而不出现意外故障,必须监测机器的内部温度并使其保持在安全的操作范围内。传统的建模方法可能很复杂,通常需要专业知识。随着这些天收集的数据量的增加,可以使用信息模型来评估热行为。本文研究了用于感应电机冷却效率监测的人工智能技术。在特定操作条件下收集实验数据,并开发了三种机器学习模型。通过严格的超参数搜索确定每种方法的最佳配置,并使用各种指标对模型进行评估。这三种解决方案即使在瞬态运行下也能很好地监测机器的状态,突出了数据驱动方法在改善热管理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Thermal Monitoring of Electric Machines through Machine Learning
The electrification of powertrains is rising as the objective for a more viable future is intensified. To ensure continuous and reliable operation without undesirable malfunctions, it is essential to monitor the internal temperatures of machines and keep them within safe operating limits. Conventional modeling methods can be complex and usually require expert knowledge. With the amount of data collected these days, it is possible to use information models to assess thermal behaviors. This paper investigates artificial intelligence techniques for monitoring the cooling efficiency of induction machines. Experimental data was collected under specific operating conditions, and three machine-learning models have been developed. The optimal configuration for each approach was determined through rigorous hyperparameter searches, and the models were evaluated using a variety of metrics. The three solutions performed well in monitoring the condition of the machine even under transient operation, highlighting the potential of data-driven methods in improving the thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信