Ψ-NET:一种用于动物分割的新型编码器-解码器架构

David Norman Díaz Estrada, Utkarsh Goyal, M. Ullah, F. A. Cheikh
{"title":"Ψ-NET:一种用于动物分割的新型编码器-解码器架构","authors":"David Norman Díaz Estrada, Utkarsh Goyal, M. Ullah, F. A. Cheikh","doi":"10.1109/IPTA54936.2022.9784135","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel Ψ-Net architecture that consists of three encoders and a decoder for animal image segmentation. The main characteristic of our proposed architecture is that the outputs at each depth level of the three encoders are summed up and then concatenated in the corresponding depth levels of the decoder for the upsampling process. We col-lected a new dataset consisting of 200 images for training the model, and we manually labelled the ground truth segmentation masks for these images. We trained our proposed model Ψ-Net on this dataset and compared the segmentation accu-racy with the classical U-Net and Y-Net architectures. Our proposed model achieved the highest accuracy on the dataset with 93% pixel accuracy, and 81.6% mean intersection-over-union (IoU).","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ψ-NET: A Novel Encoder-Decoder Architecture for Animal Segmentation\",\"authors\":\"David Norman Díaz Estrada, Utkarsh Goyal, M. Ullah, F. A. Cheikh\",\"doi\":\"10.1109/IPTA54936.2022.9784135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel Ψ-Net architecture that consists of three encoders and a decoder for animal image segmentation. The main characteristic of our proposed architecture is that the outputs at each depth level of the three encoders are summed up and then concatenated in the corresponding depth levels of the decoder for the upsampling process. We col-lected a new dataset consisting of 200 images for training the model, and we manually labelled the ground truth segmentation masks for these images. We trained our proposed model Ψ-Net on this dataset and compared the segmentation accu-racy with the classical U-Net and Y-Net architectures. Our proposed model achieved the highest accuracy on the dataset with 93% pixel accuracy, and 81.6% mean intersection-over-union (IoU).\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的Ψ-Net架构,该架构由三个编码器和一个解码器组成,用于动物图像分割。我们提出的架构的主要特点是,三个编码器的每个深度级别的输出被汇总,然后在解码器的相应深度级别中进行上采样过程的连接。我们收集了一个由200张图像组成的新数据集来训练模型,并为这些图像手动标记了地面真值分割掩码。我们在该数据集上训练了我们提出的模型Ψ-Net,并将分割精度与经典的U-Net和Y-Net架构进行了比较。我们提出的模型在数据集上达到了最高的精度,像素精度为93%,平均交叉-超联合(IoU)为81.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ψ-NET: A Novel Encoder-Decoder Architecture for Animal Segmentation
This paper proposes a novel Ψ-Net architecture that consists of three encoders and a decoder for animal image segmentation. The main characteristic of our proposed architecture is that the outputs at each depth level of the three encoders are summed up and then concatenated in the corresponding depth levels of the decoder for the upsampling process. We col-lected a new dataset consisting of 200 images for training the model, and we manually labelled the ground truth segmentation masks for these images. We trained our proposed model Ψ-Net on this dataset and compared the segmentation accu-racy with the classical U-Net and Y-Net architectures. Our proposed model achieved the highest accuracy on the dataset with 93% pixel accuracy, and 81.6% mean intersection-over-union (IoU).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信