基于多臂班组的超启发式置换流水车间问题

C. Almeida, Richard A. Gonçalves, Sandra M. Venske, R. Lüders, M. Delgado
{"title":"基于多臂班组的超启发式置换流水车间问题","authors":"C. Almeida, Richard A. Gonçalves, Sandra M. Venske, R. Lüders, M. Delgado","doi":"10.1109/BRACIS.2018.00032","DOIUrl":null,"url":null,"abstract":"In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the multi-objective framework named MOEA/D-DRA to solve the Permutation Flow Shop Problem (PFSP). All the variants are designed to choose which of low-level heuristic components (for crossover and mutation operators) should be applied to each solution during execution. FRRMAB is the classical MAB, RMAB is restless and LinUCB is contextual (its context is based on side information). The proposed approaches are compared with each other and the best one, MOEA/D-LinUCB, is compared with MOEA/DDRA using the hypervolume indicator and nonparametric statistical tests. The results demonstrate the robustness of MAB-based approaches, especially the contextual-based one.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-armed Bandit Based Hyper-Heuristics for the Permutation Flow Shop Problem\",\"authors\":\"C. Almeida, Richard A. Gonçalves, Sandra M. Venske, R. Lüders, M. Delgado\",\"doi\":\"10.1109/BRACIS.2018.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the multi-objective framework named MOEA/D-DRA to solve the Permutation Flow Shop Problem (PFSP). All the variants are designed to choose which of low-level heuristic components (for crossover and mutation operators) should be applied to each solution during execution. FRRMAB is the classical MAB, RMAB is restless and LinUCB is contextual (its context is based on side information). The proposed approaches are compared with each other and the best one, MOEA/D-LinUCB, is compared with MOEA/DDRA using the hypervolume indicator and nonparametric statistical tests. The results demonstrate the robustness of MAB-based approaches, especially the contextual-based one.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这项工作中,我们提出MAB变体作为多目标框架MOEA/D-DRA上超启发式运行的选择机制,以解决排列流车间问题(PFSP)。所有的变体都设计为在执行期间选择应该将哪个低级启发式组件(用于交叉和变异操作符)应用于每个解决方案。FRRMAB是经典MAB, RMAB是不稳定的,而LinUCB是上下文的(它的上下文是基于侧信息的)。采用hypervolume指标和非参数统计检验,对提出的方法进行了比较,并将最佳方法MOEA/D-LinUCB与MOEA/DDRA进行了比较。结果表明,基于mab的方法,特别是基于上下文的方法具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-armed Bandit Based Hyper-Heuristics for the Permutation Flow Shop Problem
In this work, we propose MAB variants as selection mechanisms of a hyper-heuristic running on the multi-objective framework named MOEA/D-DRA to solve the Permutation Flow Shop Problem (PFSP). All the variants are designed to choose which of low-level heuristic components (for crossover and mutation operators) should be applied to each solution during execution. FRRMAB is the classical MAB, RMAB is restless and LinUCB is contextual (its context is based on side information). The proposed approaches are compared with each other and the best one, MOEA/D-LinUCB, is compared with MOEA/DDRA using the hypervolume indicator and nonparametric statistical tests. The results demonstrate the robustness of MAB-based approaches, especially the contextual-based one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信