{"title":"基于新模糊神经元的系统建模新方法,在实际系统中的应用","authors":"E. Uchino, T. Yamakawa","doi":"10.1109/TAI.1994.346442","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach to system modeling by using a neo-fuzzy-neuron. The system of concern is modeled adaptively by simply feeding to the neo-fuzzy-neuron, the basic principle of which was proposed by the authors in 1992, the input and the output data of the objective system. Firstly, the neo-fuzzy-neuron is applied to the restoration of a saturated and/or intermittent speech or chaotic signal to show its actual effectiveness. It is then extended in order to get a better generalization capability. An adaptive fuzzy modeling with use of a piece-wise linear membership function is also introduced. The experimental results have provided substantial proofs for their practical use.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Neo-fuzzy-neuron based new approach to system modeling, with application to actual system\",\"authors\":\"E. Uchino, T. Yamakawa\",\"doi\":\"10.1109/TAI.1994.346442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new approach to system modeling by using a neo-fuzzy-neuron. The system of concern is modeled adaptively by simply feeding to the neo-fuzzy-neuron, the basic principle of which was proposed by the authors in 1992, the input and the output data of the objective system. Firstly, the neo-fuzzy-neuron is applied to the restoration of a saturated and/or intermittent speech or chaotic signal to show its actual effectiveness. It is then extended in order to get a better generalization capability. An adaptive fuzzy modeling with use of a piece-wise linear membership function is also introduced. The experimental results have provided substantial proofs for their practical use.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neo-fuzzy-neuron based new approach to system modeling, with application to actual system
This paper introduces a new approach to system modeling by using a neo-fuzzy-neuron. The system of concern is modeled adaptively by simply feeding to the neo-fuzzy-neuron, the basic principle of which was proposed by the authors in 1992, the input and the output data of the objective system. Firstly, the neo-fuzzy-neuron is applied to the restoration of a saturated and/or intermittent speech or chaotic signal to show its actual effectiveness. It is then extended in order to get a better generalization capability. An adaptive fuzzy modeling with use of a piece-wise linear membership function is also introduced. The experimental results have provided substantial proofs for their practical use.<>