物联网网络中使用监督学习的本地入侵检测实验

Christiana Ioannou, V. Vassiliou
{"title":"物联网网络中使用监督学习的本地入侵检测实验","authors":"Christiana Ioannou, V. Vassiliou","doi":"10.1109/DCOSS49796.2020.00073","DOIUrl":null,"url":null,"abstract":"In this paper we are experimenting with an intrusion detection system (IDS) for IoT. The IDS under consideration is employing a machine learning techniques for detecting novel at-tacks in the IoT network. We examine detection based on Support Vector Machines (SVM). The detection models were trained and evaluated for Selective Forward and Blackhole network routing layer attacks using IoT-testbed data and achieved up to 99.8% Accuracy rates and 100% Recall values.","PeriodicalId":198837,"journal":{"name":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimentation with Local Intrusion Detection in IoT Networks Using Supervised Learning\",\"authors\":\"Christiana Ioannou, V. Vassiliou\",\"doi\":\"10.1109/DCOSS49796.2020.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are experimenting with an intrusion detection system (IDS) for IoT. The IDS under consideration is employing a machine learning techniques for detecting novel at-tacks in the IoT network. We examine detection based on Support Vector Machines (SVM). The detection models were trained and evaluated for Selective Forward and Blackhole network routing layer attacks using IoT-testbed data and achieved up to 99.8% Accuracy rates and 100% Recall values.\",\"PeriodicalId\":198837,\"journal\":{\"name\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS49796.2020.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS49796.2020.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们正在试验用于物联网的入侵检测系统(IDS)。正在考虑的IDS采用机器学习技术来检测物联网网络中的新型攻击。我们检查基于支持向量机(SVM)的检测。使用物联网测试平台数据对选择性转发和黑洞网络路由层攻击的检测模型进行了训练和评估,准确率高达99.8%,召回率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimentation with Local Intrusion Detection in IoT Networks Using Supervised Learning
In this paper we are experimenting with an intrusion detection system (IDS) for IoT. The IDS under consideration is employing a machine learning techniques for detecting novel at-tacks in the IoT network. We examine detection based on Support Vector Machines (SVM). The detection models were trained and evaluated for Selective Forward and Blackhole network routing layer attacks using IoT-testbed data and achieved up to 99.8% Accuracy rates and 100% Recall values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信