基于脑电图和心电图联合特征的清醒和麻醉镇静分类

Bo-Ram Lee, Dong-Ok Won, K. Seo, Hyun Jeong Kim, Seong-Whan Lee
{"title":"基于脑电图和心电图联合特征的清醒和麻醉镇静分类","authors":"Bo-Ram Lee, Dong-Ok Won, K. Seo, Hyun Jeong Kim, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2017.7858168","DOIUrl":null,"url":null,"abstract":"There have been lots of trials to classify a depth of anesthesia using diverse physiological indices. In this study, we classified wakefulness and propofol-induced sedation using combined electroencephalography (EEG) and electrocardiography (ECG) features for better classification performance. We extract each spectral band of EEG and very low frequency (VLF) of heart rate variability using spectrogram and low-pass filter, respectively. We used combined feature of EEG spectral bands and VLF and shrinkage-regularized linear discriminant analysis as a classifier. Our results show that combination of EEG spectral power and VLF can improve the classification performance between wakefulness and sedation from 95.1±5.3% to 96.4±4.2%.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of wakefulness and anesthetic sedation using combination feature of EEG and ECG\",\"authors\":\"Bo-Ram Lee, Dong-Ok Won, K. Seo, Hyun Jeong Kim, Seong-Whan Lee\",\"doi\":\"10.1109/IWW-BCI.2017.7858168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been lots of trials to classify a depth of anesthesia using diverse physiological indices. In this study, we classified wakefulness and propofol-induced sedation using combined electroencephalography (EEG) and electrocardiography (ECG) features for better classification performance. We extract each spectral band of EEG and very low frequency (VLF) of heart rate variability using spectrogram and low-pass filter, respectively. We used combined feature of EEG spectral bands and VLF and shrinkage-regularized linear discriminant analysis as a classifier. Our results show that combination of EEG spectral power and VLF can improve the classification performance between wakefulness and sedation from 95.1±5.3% to 96.4±4.2%.\",\"PeriodicalId\":443427,\"journal\":{\"name\":\"2017 5th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2017.7858168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

利用不同的生理指标对麻醉深度进行分类,已有大量的试验。在这项研究中,我们使用脑电图(EEG)和心电图(ECG)联合特征对清醒和异丙酚诱导的镇静进行分类,以获得更好的分类效果。利用谱图和低通滤波分别提取脑电各谱带和心率变异性的甚低频。我们利用脑电频谱带与VLF的组合特征和收缩正则化线性判别分析作为分类器。结果表明,脑电频谱功率与VLF相结合可将清醒与镇静的分类性能从95.1±5.3%提高到96.4±4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of wakefulness and anesthetic sedation using combination feature of EEG and ECG
There have been lots of trials to classify a depth of anesthesia using diverse physiological indices. In this study, we classified wakefulness and propofol-induced sedation using combined electroencephalography (EEG) and electrocardiography (ECG) features for better classification performance. We extract each spectral band of EEG and very low frequency (VLF) of heart rate variability using spectrogram and low-pass filter, respectively. We used combined feature of EEG spectral bands and VLF and shrinkage-regularized linear discriminant analysis as a classifier. Our results show that combination of EEG spectral power and VLF can improve the classification performance between wakefulness and sedation from 95.1±5.3% to 96.4±4.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信