接近可行稳定匹配

Thành Nguyen, R. Vohra
{"title":"接近可行稳定匹配","authors":"Thành Nguyen, R. Vohra","doi":"10.1145/2764468.2764471","DOIUrl":null,"url":null,"abstract":"The National Resident Matching program strives for a stable matching of medical students to teaching hospitals. With the presence of couples, stable matchings need not exist. For any student preferences, we show that each instance of a stable matching problem has a 'nearby' instance with a stable matching. The nearby instance is obtained by perturbing the capacities of the hospitals. Our approach is general and applies to other type of complementarities, as well as matchings with side constraints and contracts.","PeriodicalId":376992,"journal":{"name":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Near Feasible Stable Matchings\",\"authors\":\"Thành Nguyen, R. Vohra\",\"doi\":\"10.1145/2764468.2764471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The National Resident Matching program strives for a stable matching of medical students to teaching hospitals. With the presence of couples, stable matchings need not exist. For any student preferences, we show that each instance of a stable matching problem has a 'nearby' instance with a stable matching. The nearby instance is obtained by perturbing the capacities of the hospitals. Our approach is general and applies to other type of complementarities, as well as matchings with side constraints and contracts.\",\"PeriodicalId\":376992,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM Conference on Economics and Computation\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2764468.2764471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764468.2764471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

国家住院医师匹配计划力求医学生与教学医院的稳定匹配。有了夫妻的存在,稳定的配对就不需要存在了。对于任何学生的偏好,我们证明了稳定匹配问题的每个实例都有一个稳定匹配的“附近”实例。附近的例子是通过扰乱医院的能力得到的。我们的方法是通用的,适用于其他类型的互补,以及与侧约束和契约的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near Feasible Stable Matchings
The National Resident Matching program strives for a stable matching of medical students to teaching hospitals. With the presence of couples, stable matchings need not exist. For any student preferences, we show that each instance of a stable matching problem has a 'nearby' instance with a stable matching. The nearby instance is obtained by perturbing the capacities of the hospitals. Our approach is general and applies to other type of complementarities, as well as matchings with side constraints and contracts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信