二维不可压缩流体环面上Navier-Stokes方程组七模态系统的动力学行为及数值模拟

Heyuan Wang, Yan Gao
{"title":"二维不可压缩流体环面上Navier-Stokes方程组七模态系统的动力学行为及数值模拟","authors":"Heyuan Wang, Yan Gao","doi":"10.1109/IWCFTA.2012.21","DOIUrl":null,"url":null,"abstract":"A seven-mode truncation system of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is considered. Its stationary solutions and stability are presented, the existence of attractor and the global stability of the system are discussed. The whole process, which shows a chaos behavior approached through an involved sequence of bifurcations, is simulated numerically by computer with the changing of Reynolds number.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Dynamical Behavior and the Numerical Simulation of a Seven-Modes System of the Navier-Stokes Equations for a Two-Dimensional Incompressible Fluid on a Torus\",\"authors\":\"Heyuan Wang, Yan Gao\",\"doi\":\"10.1109/IWCFTA.2012.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A seven-mode truncation system of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is considered. Its stationary solutions and stability are presented, the existence of attractor and the global stability of the system are discussed. The whole process, which shows a chaos behavior approached through an involved sequence of bifurcations, is simulated numerically by computer with the changing of Reynolds number.\",\"PeriodicalId\":354870,\"journal\":{\"name\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2012.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了二维不可压缩流体环面上Navier-Stokes方程的七模截断系统。给出了系统的平稳解和稳定性,讨论了吸引子的存在性和系统的全局稳定性。在雷诺数变化的情况下,用计算机对整个过程进行了数值模拟,该过程表现为一种通过涉及的分岔序列逼近的混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dynamical Behavior and the Numerical Simulation of a Seven-Modes System of the Navier-Stokes Equations for a Two-Dimensional Incompressible Fluid on a Torus
A seven-mode truncation system of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is considered. Its stationary solutions and stability are presented, the existence of attractor and the global stability of the system are discussed. The whole process, which shows a chaos behavior approached through an involved sequence of bifurcations, is simulated numerically by computer with the changing of Reynolds number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信