改进粒子群算法在天线阵方向图合成中的应用

W. Li, S. Liu, X. Shi
{"title":"改进粒子群算法在天线阵方向图合成中的应用","authors":"W. Li, S. Liu, X. Shi","doi":"10.1109/GSMM.2008.4534574","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a robust stochastic evolutionary computation technique based on the movement and intelligence of swarm, which is very easy to understand and implement. In order to overcome the drawbacks of standard PSO, some improved mechanisms based on the design of a novel formula for velocity updating, and global best perturbation are adopted. The simulation results of sidelobe reduction of 2-D array show that it is effective.","PeriodicalId":304483,"journal":{"name":"2008 Global Symposium on Millimeter Waves","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Improved Particle Swarm Optimization in Antenna Array Pattern Syntheis\",\"authors\":\"W. Li, S. Liu, X. Shi\",\"doi\":\"10.1109/GSMM.2008.4534574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is a robust stochastic evolutionary computation technique based on the movement and intelligence of swarm, which is very easy to understand and implement. In order to overcome the drawbacks of standard PSO, some improved mechanisms based on the design of a novel formula for velocity updating, and global best perturbation are adopted. The simulation results of sidelobe reduction of 2-D array show that it is effective.\",\"PeriodicalId\":304483,\"journal\":{\"name\":\"2008 Global Symposium on Millimeter Waves\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Global Symposium on Millimeter Waves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2008.4534574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Global Symposium on Millimeter Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2008.4534574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子群优化(PSO)是一种基于群体运动和智能的鲁棒随机进化计算技术,具有易于理解和实现的特点。为了克服标准粒子群算法的不足,采用了基于速度更新公式设计和全局最优摄动的改进机构。仿真结果表明,二维阵列旁瓣抑制是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Improved Particle Swarm Optimization in Antenna Array Pattern Syntheis
Particle swarm optimization (PSO) is a robust stochastic evolutionary computation technique based on the movement and intelligence of swarm, which is very easy to understand and implement. In order to overcome the drawbacks of standard PSO, some improved mechanisms based on the design of a novel formula for velocity updating, and global best perturbation are adopted. The simulation results of sidelobe reduction of 2-D array show that it is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信