LSTM优化器的长期用电量预测性能评价

Kwabena Appiah Ampofo, E. Owusu, J. K. Appati
{"title":"LSTM优化器的长期用电量预测性能评价","authors":"Kwabena Appiah Ampofo, E. Owusu, J. K. Appati","doi":"10.1109/ASSIC55218.2022.10088353","DOIUrl":null,"url":null,"abstract":"Electricity consumption is an important economic index, and it plays a significant role in drawing up an energy development policy for every country. Thus, having reliable information regarding the prediction of electricity consumption in a country is imperative to policy and decision-makers to plan and schedule the operation of power systems. Studies have shown that the Long Short-Term Memory (LSTM) neural network model is capable of learning long term temporary dependencies and nonlinear characteristic of a time series phenomenon and it can be a better alternative to the traditional neural networks and statistical methods for predicting electricity consumption. The LSTM neural network model has many hyperparameters, and one of the important hyperparameters is the optimization method. The optimization method plays a significant role in the performance of an LSTM neural network model, but selecting it is not a trivial task to end-users as there is no particular approach for selecting an appropriate method for a particular task. In this study, the LSTM neural network model was used to predict long term electricity consumption using socioeconomic data as predictors to analyze six popular optimization methods that have been implemented in the Keras machine learning library. The motivation is to determine which optimization method will be most suitable for electricity consumption prediction using LSTM neural network model. The results of the study show that the Stochastic Gradient Descent (SGD) optimizer is the most outstanding optimization method.","PeriodicalId":441406,"journal":{"name":"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of LSTM Optimizers for Long-Term Electricity Consumption Prediction\",\"authors\":\"Kwabena Appiah Ampofo, E. Owusu, J. K. Appati\",\"doi\":\"10.1109/ASSIC55218.2022.10088353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity consumption is an important economic index, and it plays a significant role in drawing up an energy development policy for every country. Thus, having reliable information regarding the prediction of electricity consumption in a country is imperative to policy and decision-makers to plan and schedule the operation of power systems. Studies have shown that the Long Short-Term Memory (LSTM) neural network model is capable of learning long term temporary dependencies and nonlinear characteristic of a time series phenomenon and it can be a better alternative to the traditional neural networks and statistical methods for predicting electricity consumption. The LSTM neural network model has many hyperparameters, and one of the important hyperparameters is the optimization method. The optimization method plays a significant role in the performance of an LSTM neural network model, but selecting it is not a trivial task to end-users as there is no particular approach for selecting an appropriate method for a particular task. In this study, the LSTM neural network model was used to predict long term electricity consumption using socioeconomic data as predictors to analyze six popular optimization methods that have been implemented in the Keras machine learning library. The motivation is to determine which optimization method will be most suitable for electricity consumption prediction using LSTM neural network model. The results of the study show that the Stochastic Gradient Descent (SGD) optimizer is the most outstanding optimization method.\",\"PeriodicalId\":441406,\"journal\":{\"name\":\"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSIC55218.2022.10088353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSIC55218.2022.10088353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用电量是一项重要的经济指标,对各国能源发展政策的制定起着重要的作用。因此,掌握有关一个国家电力消耗预测的可靠信息对于政策和决策者规划和安排电力系统的运行是必不可少的。研究表明,长短期记忆(LSTM)神经网络模型能够学习时间序列现象的长期临时依赖关系和非线性特征,可以替代传统的神经网络和统计方法来预测用电量。LSTM神经网络模型有许多超参数,其中一个重要的超参数就是优化方法。优化方法在LSTM神经网络模型的性能中起着重要的作用,但对于最终用户来说,选择优化方法并不是一项简单的任务,因为对于特定的任务,没有特定的方法来选择合适的方法。在本研究中,使用LSTM神经网络模型预测长期电力消耗,使用社会经济数据作为预测因子,分析了在Keras机器学习库中实现的六种流行的优化方法。动机是确定哪种优化方法最适合使用LSTM神经网络模型进行用电量预测。研究结果表明,随机梯度下降(SGD)优化器是最优秀的优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of LSTM Optimizers for Long-Term Electricity Consumption Prediction
Electricity consumption is an important economic index, and it plays a significant role in drawing up an energy development policy for every country. Thus, having reliable information regarding the prediction of electricity consumption in a country is imperative to policy and decision-makers to plan and schedule the operation of power systems. Studies have shown that the Long Short-Term Memory (LSTM) neural network model is capable of learning long term temporary dependencies and nonlinear characteristic of a time series phenomenon and it can be a better alternative to the traditional neural networks and statistical methods for predicting electricity consumption. The LSTM neural network model has many hyperparameters, and one of the important hyperparameters is the optimization method. The optimization method plays a significant role in the performance of an LSTM neural network model, but selecting it is not a trivial task to end-users as there is no particular approach for selecting an appropriate method for a particular task. In this study, the LSTM neural network model was used to predict long term electricity consumption using socioeconomic data as predictors to analyze six popular optimization methods that have been implemented in the Keras machine learning library. The motivation is to determine which optimization method will be most suitable for electricity consumption prediction using LSTM neural network model. The results of the study show that the Stochastic Gradient Descent (SGD) optimizer is the most outstanding optimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信