基于在线形状学习的自动图像分割和分类

Kyoung-Mi Lee, W. Street
{"title":"基于在线形状学习的自动图像分割和分类","authors":"Kyoung-Mi Lee, W. Street","doi":"10.1109/WACV.2000.895404","DOIUrl":null,"url":null,"abstract":"The detection, precise segmentation and classification of specific objects is an important task in many computer vision and image analysis problems, particularly in medical domains. Existing methods such as template matching typically require excessive computation and user interaction, particularly if the desired objects have a variety of different shapes. This paper presents a new approach that uses unsupervised learning to find a set of templates specific to the objects being outlined by the user. The templates are formed by averaging the shapes that belong to a particular cluster, and are used to guide an intelligent search through the space of possible objects. This results in decreased time and increased accuracy for repetitive segmentation problems, as system performance improves with continued use. Further, the information gained through clustering and user feedback is used to classify the objects for problems in which shape is relevant to the classification. The effectiveness of the resulting system is demonstrated on two applications: a medical diagnosis task using cytological images and a vehicle recognition task.","PeriodicalId":306720,"journal":{"name":"Proceedings Fifth IEEE Workshop on Applications of Computer Vision","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic image segmentation and classification using on-line shape learning\",\"authors\":\"Kyoung-Mi Lee, W. Street\",\"doi\":\"10.1109/WACV.2000.895404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection, precise segmentation and classification of specific objects is an important task in many computer vision and image analysis problems, particularly in medical domains. Existing methods such as template matching typically require excessive computation and user interaction, particularly if the desired objects have a variety of different shapes. This paper presents a new approach that uses unsupervised learning to find a set of templates specific to the objects being outlined by the user. The templates are formed by averaging the shapes that belong to a particular cluster, and are used to guide an intelligent search through the space of possible objects. This results in decreased time and increased accuracy for repetitive segmentation problems, as system performance improves with continued use. Further, the information gained through clustering and user feedback is used to classify the objects for problems in which shape is relevant to the classification. The effectiveness of the resulting system is demonstrated on two applications: a medical diagnosis task using cytological images and a vehicle recognition task.\",\"PeriodicalId\":306720,\"journal\":{\"name\":\"Proceedings Fifth IEEE Workshop on Applications of Computer Vision\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2000.895404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2000.895404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在许多计算机视觉和图像分析问题中,特别是在医学领域,对特定物体的检测、精确分割和分类是一项重要任务。现有的方法,如模板匹配,通常需要大量的计算和用户交互,特别是当期望的对象具有各种不同的形状时。本文提出了一种新的方法,使用无监督学习来找到一组特定于用户所概述的对象的模板。模板是通过对属于特定集群的形状进行平均而形成的,并用于指导在可能对象的空间中进行智能搜索。这减少了重复分割问题的时间,提高了准确性,因为系统性能随着持续使用而提高。此外,通过聚类和用户反馈获得的信息用于对形状与分类相关的问题进行对象分类。该系统的有效性在两个应用中得到了证明:使用细胞学图像的医学诊断任务和车辆识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic image segmentation and classification using on-line shape learning
The detection, precise segmentation and classification of specific objects is an important task in many computer vision and image analysis problems, particularly in medical domains. Existing methods such as template matching typically require excessive computation and user interaction, particularly if the desired objects have a variety of different shapes. This paper presents a new approach that uses unsupervised learning to find a set of templates specific to the objects being outlined by the user. The templates are formed by averaging the shapes that belong to a particular cluster, and are used to guide an intelligent search through the space of possible objects. This results in decreased time and increased accuracy for repetitive segmentation problems, as system performance improves with continued use. Further, the information gained through clustering and user feedback is used to classify the objects for problems in which shape is relevant to the classification. The effectiveness of the resulting system is demonstrated on two applications: a medical diagnosis task using cytological images and a vehicle recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信