信息检索中的神经网络

Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, M. de Rijke, Bhaskar Mitra
{"title":"信息检索中的神经网络","authors":"Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, M. de Rijke, Bhaskar Mitra","doi":"10.1145/3159652.3162009","DOIUrl":null,"url":null,"abstract":"Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many approaches to many IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. The aim of this full- day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural Networks for Information Retrieval\",\"authors\":\"Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani, M. de Rijke, Bhaskar Mitra\",\"doi\":\"10.1145/3159652.3162009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many approaches to many IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. The aim of this full- day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3162009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3162009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习在现代红外系统的许多方面都发挥着作用,而深度学习在所有这些方面都有应用。现代研究的快节奏已经产生了许多方法来解决许多红外问题。对于初中生和寻找新的研究课题和方向的有经验的研究人员来说,可用的信息量可能是压倒性的。这一整天的教程的目的是给出一个清晰的概述,目前的可靠的神经方法在IR和他们如何有利于IR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Networks for Information Retrieval
Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many approaches to many IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. The aim of this full- day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信