基于gpu的多资产美式期权定价并行算法

D. Dang, C. Christara, K. Jackson
{"title":"基于gpu的多资产美式期权定价并行算法","authors":"D. Dang, C. Christara, K. Jackson","doi":"10.2139/ssrn.1673626","DOIUrl":null,"url":null,"abstract":"We develop highly-efficient parallel Partial Differential Equation (PDE) based pricing methods on Graphics Processing Units (GPUs) for multi-asset American options. Our pricing approach is built upon a combination of a discrete penalty approach for the linear complementarity problem arising due to the free boundary and a GPU-based parallel Alternating Direction Implicit Approximate Factorization technique with finite differences on uniform grids for the solution of the linear algebraic system arising from each penalty iteration. A timestep size selector implemented efficiently on GPUs is used to further increase the efficiency of the methods. We demonstrate the efficiency and accuracy of the parallel numerical methods by pricing American options written on three assets.","PeriodicalId":335279,"journal":{"name":"CompSciRN: Parallel Processing (Topic)","volume":"2674 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Efficient GPU-Based Parallel Algorithm for Pricing Multi-Asset American Options\",\"authors\":\"D. Dang, C. Christara, K. Jackson\",\"doi\":\"10.2139/ssrn.1673626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop highly-efficient parallel Partial Differential Equation (PDE) based pricing methods on Graphics Processing Units (GPUs) for multi-asset American options. Our pricing approach is built upon a combination of a discrete penalty approach for the linear complementarity problem arising due to the free boundary and a GPU-based parallel Alternating Direction Implicit Approximate Factorization technique with finite differences on uniform grids for the solution of the linear algebraic system arising from each penalty iteration. A timestep size selector implemented efficiently on GPUs is used to further increase the efficiency of the methods. We demonstrate the efficiency and accuracy of the parallel numerical methods by pricing American options written on three assets.\",\"PeriodicalId\":335279,\"journal\":{\"name\":\"CompSciRN: Parallel Processing (Topic)\",\"volume\":\"2674 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Parallel Processing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1673626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Parallel Processing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1673626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对多资产美式期权的定价问题,提出了基于图形处理单元(gpu)的高效并行偏微分方程(PDE)定价方法。我们的定价方法是建立在一种离散惩罚方法的组合上,该方法用于解决由于自由边界引起的线性互补问题,以及基于gpu的并行交替方向隐式近似分解技术,该技术在均匀网格上具有有限差分,用于解决每次惩罚迭代引起的线性代数系统。在gpu上高效实现了时间步长选择器,进一步提高了方法的效率。通过对三种资产的美式期权进行定价,验证了并行数值方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient GPU-Based Parallel Algorithm for Pricing Multi-Asset American Options
We develop highly-efficient parallel Partial Differential Equation (PDE) based pricing methods on Graphics Processing Units (GPUs) for multi-asset American options. Our pricing approach is built upon a combination of a discrete penalty approach for the linear complementarity problem arising due to the free boundary and a GPU-based parallel Alternating Direction Implicit Approximate Factorization technique with finite differences on uniform grids for the solution of the linear algebraic system arising from each penalty iteration. A timestep size selector implemented efficiently on GPUs is used to further increase the efficiency of the methods. We demonstrate the efficiency and accuracy of the parallel numerical methods by pricing American options written on three assets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信