SUMO工具箱:用于自动回归建模和主动学习的工具

I. Couckuyt, D. Gorissen, K. Crombecq, D. Deschrijver, T. Dhaene
{"title":"SUMO工具箱:用于自动回归建模和主动学习的工具","authors":"I. Couckuyt, D. Gorissen, K. Crombecq, D. Deschrijver, T. Dhaene","doi":"10.1109/AFRCON.2013.6757594","DOIUrl":null,"url":null,"abstract":"Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. Due to the computational cost of these high fidelity simulations, surrogate models are often employed as a dropin replacement for the original simulator, in order to reduce evaluation times. In this context, neural networks, kernel methods, and other modeling techniques have become indispensable. Surrogate models have proven to be very useful for tasks such as optimization, design space exploration, visualization, prototyping and sensitivity analysis. We present a fully automated machine learning tool for generating accurate surrogate models, using active learning techniques to minimize the number of simulations and to maximize efficiency.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The SUMO toolbox: A tool for automatic regression modeling and active learning\",\"authors\":\"I. Couckuyt, D. Gorissen, K. Crombecq, D. Deschrijver, T. Dhaene\",\"doi\":\"10.1109/AFRCON.2013.6757594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. Due to the computational cost of these high fidelity simulations, surrogate models are often employed as a dropin replacement for the original simulator, in order to reduce evaluation times. In this context, neural networks, kernel methods, and other modeling techniques have become indispensable. Surrogate models have proven to be very useful for tasks such as optimization, design space exploration, visualization, prototyping and sensitivity analysis. We present a fully automated machine learning tool for generating accurate surrogate models, using active learning techniques to minimize the number of simulations and to maximize efficiency.\",\"PeriodicalId\":159306,\"journal\":{\"name\":\"2013 Africon\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Africon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFRCON.2013.6757594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2013.6757594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多复杂的、真实世界的现象很难用对照实验直接研究。相反,使用计算机模拟作为一种可行的替代方法已经变得司空见惯。由于这些高保真仿真的计算成本,代理模型经常被用作原始模拟器的替代,以减少评估时间。在这种情况下,神经网络、核方法和其他建模技术变得不可或缺。替代模型已被证明对优化、设计空间探索、可视化、原型设计和灵敏度分析等任务非常有用。我们提出了一种全自动机器学习工具,用于生成准确的代理模型,使用主动学习技术来减少模拟次数并最大化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The SUMO toolbox: A tool for automatic regression modeling and active learning
Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. Due to the computational cost of these high fidelity simulations, surrogate models are often employed as a dropin replacement for the original simulator, in order to reduce evaluation times. In this context, neural networks, kernel methods, and other modeling techniques have become indispensable. Surrogate models have proven to be very useful for tasks such as optimization, design space exploration, visualization, prototyping and sensitivity analysis. We present a fully automated machine learning tool for generating accurate surrogate models, using active learning techniques to minimize the number of simulations and to maximize efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信