异构soc自适应优化的在线学习

Ganapati Bhat, Sumit K. Mandal, U. Gupta, Ümit Y. Ogras
{"title":"异构soc自适应优化的在线学习","authors":"Ganapati Bhat, Sumit K. Mandal, U. Gupta, Ümit Y. Ogras","doi":"10.1145/3240765.3243489","DOIUrl":null,"url":null,"abstract":"Energy efficiency and performance of heterogeneous multiprocessor systems-on-chip (SoC) depend critically on utilizing a diverse set of processing elements and managing their power states dynamically. Dynamic resource management techniques typically rely on power consumption and performance models to assess the impact of dynamic decisions. Despite the importance of these decisions, many existing approaches rely on fixed power and performance models learned offline. This paper presents an online learning framework to construct adaptive analytical models. We illustrate this framework for modeling GPU frame processing time, GPU power consumption and SoC power-temperature dynamics. Experiments on Intel Atom E3826, Qualcomm Snapdragon 810, and Samsung Exynos 5422 SoCs demonstrate that the proposed approach achieves less than 6% error under dynamically varying workloads.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Online Learning for Adaptive Optimization of Heterogeneous SoCs\",\"authors\":\"Ganapati Bhat, Sumit K. Mandal, U. Gupta, Ümit Y. Ogras\",\"doi\":\"10.1145/3240765.3243489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency and performance of heterogeneous multiprocessor systems-on-chip (SoC) depend critically on utilizing a diverse set of processing elements and managing their power states dynamically. Dynamic resource management techniques typically rely on power consumption and performance models to assess the impact of dynamic decisions. Despite the importance of these decisions, many existing approaches rely on fixed power and performance models learned offline. This paper presents an online learning framework to construct adaptive analytical models. We illustrate this framework for modeling GPU frame processing time, GPU power consumption and SoC power-temperature dynamics. Experiments on Intel Atom E3826, Qualcomm Snapdragon 810, and Samsung Exynos 5422 SoCs demonstrate that the proposed approach achieves less than 6% error under dynamically varying workloads.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3243489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3243489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

异构多处理器片上系统(SoC)的能源效率和性能关键取决于利用各种处理元件并动态管理其电源状态。动态资源管理技术通常依赖于功耗和性能模型来评估动态决策的影响。尽管这些决策很重要,但许多现有的方法依赖于离线学习的固定功率和性能模型。本文提出了一个在线学习框架来构建自适应分析模型。我们演示了这个框架来建模GPU帧处理时间、GPU功耗和SoC功耗-温度动态。在英特尔凌动E3826、高通骁龙810和三星Exynos 5422 soc上的实验表明,该方法在动态变化的工作负载下误差小于6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Learning for Adaptive Optimization of Heterogeneous SoCs
Energy efficiency and performance of heterogeneous multiprocessor systems-on-chip (SoC) depend critically on utilizing a diverse set of processing elements and managing their power states dynamically. Dynamic resource management techniques typically rely on power consumption and performance models to assess the impact of dynamic decisions. Despite the importance of these decisions, many existing approaches rely on fixed power and performance models learned offline. This paper presents an online learning framework to construct adaptive analytical models. We illustrate this framework for modeling GPU frame processing time, GPU power consumption and SoC power-temperature dynamics. Experiments on Intel Atom E3826, Qualcomm Snapdragon 810, and Samsung Exynos 5422 SoCs demonstrate that the proposed approach achieves less than 6% error under dynamically varying workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信