一种基于作物的匹配成本计算多分支网络

Yu Chen, Youshen Xia, Chenwang Wu
{"title":"一种基于作物的匹配成本计算多分支网络","authors":"Yu Chen, Youshen Xia, Chenwang Wu","doi":"10.1109/CISP-BMEI.2018.8633267","DOIUrl":null,"url":null,"abstract":"Stereo matching is a challenging problem in computer vision. An excellent matching cost computation method is useful for enhancing stereo matching performance. Traditional matching cost computation is lack of robustness. In this paper, we propose a crop-based multi-branch convolution neural network (CBMBNet) for robust matching cost computation. We employ ResNeXt block for feature extraction and introduce a new crop-based multi-branch network structure to enhance the accuracy of matching. Several post-processing techniques are used further to enhance disparity map equality. The experimental results show that the proposed CBMBNet can reduce error rates than MC-CNN-fst and MC-CNN-acrt approaches based on Middlebury stereo data set.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Crop-Based Multi-Branch Network for Matching Cost Computation\",\"authors\":\"Yu Chen, Youshen Xia, Chenwang Wu\",\"doi\":\"10.1109/CISP-BMEI.2018.8633267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereo matching is a challenging problem in computer vision. An excellent matching cost computation method is useful for enhancing stereo matching performance. Traditional matching cost computation is lack of robustness. In this paper, we propose a crop-based multi-branch convolution neural network (CBMBNet) for robust matching cost computation. We employ ResNeXt block for feature extraction and introduce a new crop-based multi-branch network structure to enhance the accuracy of matching. Several post-processing techniques are used further to enhance disparity map equality. The experimental results show that the proposed CBMBNet can reduce error rates than MC-CNN-fst and MC-CNN-acrt approaches based on Middlebury stereo data set.\",\"PeriodicalId\":117227,\"journal\":{\"name\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2018.8633267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

立体匹配是计算机视觉中的一个具有挑战性的问题。一种优秀的匹配代价计算方法有助于提高立体匹配性能。传统的匹配代价计算缺乏鲁棒性。本文提出了一种基于作物的多分支卷积神经网络(CBMBNet),用于鲁棒匹配代价的计算。我们采用ResNeXt块进行特征提取,并引入了一种新的基于作物的多分支网络结构来提高匹配精度。进一步使用了一些后处理技术来增强视差图的平等性。实验结果表明,与基于Middlebury立体数据集的MC-CNN-fst和MC-CNN-acrt方法相比,提出的CBMBNet方法可以降低错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Crop-Based Multi-Branch Network for Matching Cost Computation
Stereo matching is a challenging problem in computer vision. An excellent matching cost computation method is useful for enhancing stereo matching performance. Traditional matching cost computation is lack of robustness. In this paper, we propose a crop-based multi-branch convolution neural network (CBMBNet) for robust matching cost computation. We employ ResNeXt block for feature extraction and introduce a new crop-based multi-branch network structure to enhance the accuracy of matching. Several post-processing techniques are used further to enhance disparity map equality. The experimental results show that the proposed CBMBNet can reduce error rates than MC-CNN-fst and MC-CNN-acrt approaches based on Middlebury stereo data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信