{"title":"基于DA-YOLOv4的接触网小目标检测算法研究","authors":"Bo Li, Wei-dong Jin, Junxiao Ren","doi":"10.1109/cniot55862.2022.00019","DOIUrl":null,"url":null,"abstract":"In recent years, computer vision has been greatly developed in the detection of catenary equipment. With its high efficiency and accuracy, it meets the needs of safety detection of catenary equipment in the safe operation of trains. In the catenary monitoring image, some equipment targets are small, which makes it difficult to identify. To solve this problem, this paper proposes an improved small target detection algorithm -DA-YOLOv4. In this method, Dual Attention Network for Scene Segmentation ( DANet ) is integrated into YOLOv4 model. Position Attention Module ( PAM ) and Channel Attention Module ( CAM ) are applied to enhance the attention of feature extraction network to small targets from two aspects of spatial location and feature channel. The context information is fully utilized to solve the problems of difficult feature extraction and low recognition rate of small targets. Experiments show that the DA-YOLOv4 algorithm can effectively improve the detection effect of small targets in the catenary, and the average detection accuracy on the catenary data set is 77.6 %, which is 4.7 % higher than that of the YOLOv4 network.","PeriodicalId":251734,"journal":{"name":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Small Target Detection Algorithm of Catenary Based on DA-YOLOv4\",\"authors\":\"Bo Li, Wei-dong Jin, Junxiao Ren\",\"doi\":\"10.1109/cniot55862.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, computer vision has been greatly developed in the detection of catenary equipment. With its high efficiency and accuracy, it meets the needs of safety detection of catenary equipment in the safe operation of trains. In the catenary monitoring image, some equipment targets are small, which makes it difficult to identify. To solve this problem, this paper proposes an improved small target detection algorithm -DA-YOLOv4. In this method, Dual Attention Network for Scene Segmentation ( DANet ) is integrated into YOLOv4 model. Position Attention Module ( PAM ) and Channel Attention Module ( CAM ) are applied to enhance the attention of feature extraction network to small targets from two aspects of spatial location and feature channel. The context information is fully utilized to solve the problems of difficult feature extraction and low recognition rate of small targets. Experiments show that the DA-YOLOv4 algorithm can effectively improve the detection effect of small targets in the catenary, and the average detection accuracy on the catenary data set is 77.6 %, which is 4.7 % higher than that of the YOLOv4 network.\",\"PeriodicalId\":251734,\"journal\":{\"name\":\"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cniot55862.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cniot55862.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
近年来,计算机视觉在接触网设备检测方面有了很大的发展。该方法效率高、精度高,满足了列车安全运行中接触网设备安全检测的需要。在接触网监测图像中,一些设备目标较小,给识别带来困难。为了解决这一问题,本文提出了一种改进的小目标检测算法-DA-YOLOv4。该方法将场景分割双注意网络(Dual Attention Network for Scene Segmentation, DANet)集成到YOLOv4模型中。利用位置注意模块(PAM)和通道注意模块(CAM)从空间位置和特征通道两个方面增强特征提取网络对小目标的注意。充分利用上下文信息,解决了小目标特征提取困难、识别率低的问题。实验表明,DA-YOLOv4算法能有效提高接触网中小目标的检测效果,在接触网数据集上的平均检测准确率为77.6%,比YOLOv4网络提高了4.7%。
Research on Small Target Detection Algorithm of Catenary Based on DA-YOLOv4
In recent years, computer vision has been greatly developed in the detection of catenary equipment. With its high efficiency and accuracy, it meets the needs of safety detection of catenary equipment in the safe operation of trains. In the catenary monitoring image, some equipment targets are small, which makes it difficult to identify. To solve this problem, this paper proposes an improved small target detection algorithm -DA-YOLOv4. In this method, Dual Attention Network for Scene Segmentation ( DANet ) is integrated into YOLOv4 model. Position Attention Module ( PAM ) and Channel Attention Module ( CAM ) are applied to enhance the attention of feature extraction network to small targets from two aspects of spatial location and feature channel. The context information is fully utilized to solve the problems of difficult feature extraction and low recognition rate of small targets. Experiments show that the DA-YOLOv4 algorithm can effectively improve the detection effect of small targets in the catenary, and the average detection accuracy on the catenary data set is 77.6 %, which is 4.7 % higher than that of the YOLOv4 network.