双次随机矩阵的凸集

Lei Deng
{"title":"双次随机矩阵的凸集","authors":"Lei Deng","doi":"10.1109/IWSDA46143.2019.8966124","DOIUrl":null,"url":null,"abstract":"Denote $\\mathcal{A}$ as the set of all doubly substochastic m×n matrices and let k be a positive integer. Let $\\mathcal{A}_k$ be the set of all 1/k-bounded doubly substochastic m × n matrices, i.e., $\\mathcal{A}_k \\triangleq \\{E \\in \\mathcal{A}:e_{i,j} \\in [0,1/k],\\forall i = 1,2, \\cdots ,m,j = 1,2, \\cdots ,n\\}$. Denote ℬk as the set of all matrices in $\\mathcal{A}_k$ whose entries are either 0 or 1/k. We prove that $\\mathcal{A}_k$ is the convex hull of all matrices in ℬk. In addition, we introduce an application of this result in communication system.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convex Set of Doubly Substochastic Matrices\",\"authors\":\"Lei Deng\",\"doi\":\"10.1109/IWSDA46143.2019.8966124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote $\\\\mathcal{A}$ as the set of all doubly substochastic m×n matrices and let k be a positive integer. Let $\\\\mathcal{A}_k$ be the set of all 1/k-bounded doubly substochastic m × n matrices, i.e., $\\\\mathcal{A}_k \\\\triangleq \\\\{E \\\\in \\\\mathcal{A}:e_{i,j} \\\\in [0,1/k],\\\\forall i = 1,2, \\\\cdots ,m,j = 1,2, \\\\cdots ,n\\\\}$. Denote ℬk as the set of all matrices in $\\\\mathcal{A}_k$ whose entries are either 0 or 1/k. We prove that $\\\\mathcal{A}_k$ is the convex hull of all matrices in ℬk. In addition, we introduce an application of this result in communication system.\",\"PeriodicalId\":326214,\"journal\":{\"name\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA46143.2019.8966124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

记$\mathcal{A}$为所有双次随机m×n矩阵的集合,设k为正整数。设$\mathcal{A}_k$是所有1/k有界的双次随机m × n矩阵的集合,即$\mathcal{A}_k \triangleq \{E \in \mathcal{A}:e_{i,j} \in [0,1/k],\forall i = 1,2, \cdots,m,j = 1,2, \cdots,n\}$。记作$\mathcal{A}_k$中所有元素为0或1/k的矩阵的集合。证明了$\mathcal{A}_k$是所有矩阵的凸包。此外,还介绍了该结果在通信系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex Set of Doubly Substochastic Matrices
Denote $\mathcal{A}$ as the set of all doubly substochastic m×n matrices and let k be a positive integer. Let $\mathcal{A}_k$ be the set of all 1/k-bounded doubly substochastic m × n matrices, i.e., $\mathcal{A}_k \triangleq \{E \in \mathcal{A}:e_{i,j} \in [0,1/k],\forall i = 1,2, \cdots ,m,j = 1,2, \cdots ,n\}$. Denote ℬk as the set of all matrices in $\mathcal{A}_k$ whose entries are either 0 or 1/k. We prove that $\mathcal{A}_k$ is the convex hull of all matrices in ℬk. In addition, we introduce an application of this result in communication system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信