M. Dahlmanns, J. Pennekamp, I. Fink, Bernd Schoolmann, Klaus Wehrle, Martin Henze
{"title":"网络物理系统中发布/订阅通信的透明端到端安全","authors":"M. Dahlmanns, J. Pennekamp, I. Fink, Bernd Schoolmann, Klaus Wehrle, Martin Henze","doi":"10.1145/3445969.3450423","DOIUrl":null,"url":null,"abstract":"The ongoing digitization of industrial manufacturing leads to a decisive change in industrial communication paradigms. Moving from traditional one-to-one to many-to-many communication, publish/subscribe systems promise a more dynamic and efficient exchange of data. However, the resulting significantly more complex communication relationships render traditional end-to-end security futile for sufficiently protecting the sensitive and safety-critical data transmitted in industrial systems. Most notably, the central message brokers inherent in publish/subscribe systems introduce a designated weak spot for security as they can access all communication messages. To address this issue, we propose ENTRUST, a novel solution for key server-based end-to-end security in publish/subscribe systems. ENTRUST transparently realizes confidentiality, integrity, and authentication for publish/subscribe systems without any modification of the underlying protocol. We exemplarily implement ENTRUST on top of MQTT, the de-facto standard for machine-to-machine communication, showing that ENTRUST can integrate seamlessly into existing publish/subscribe systems.","PeriodicalId":103324,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Transparent End-to-End Security for Publish/Subscribe Communication in Cyber-Physical Systems\",\"authors\":\"M. Dahlmanns, J. Pennekamp, I. Fink, Bernd Schoolmann, Klaus Wehrle, Martin Henze\",\"doi\":\"10.1145/3445969.3450423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing digitization of industrial manufacturing leads to a decisive change in industrial communication paradigms. Moving from traditional one-to-one to many-to-many communication, publish/subscribe systems promise a more dynamic and efficient exchange of data. However, the resulting significantly more complex communication relationships render traditional end-to-end security futile for sufficiently protecting the sensitive and safety-critical data transmitted in industrial systems. Most notably, the central message brokers inherent in publish/subscribe systems introduce a designated weak spot for security as they can access all communication messages. To address this issue, we propose ENTRUST, a novel solution for key server-based end-to-end security in publish/subscribe systems. ENTRUST transparently realizes confidentiality, integrity, and authentication for publish/subscribe systems without any modification of the underlying protocol. We exemplarily implement ENTRUST on top of MQTT, the de-facto standard for machine-to-machine communication, showing that ENTRUST can integrate seamlessly into existing publish/subscribe systems.\",\"PeriodicalId\":103324,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3445969.3450423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3445969.3450423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transparent End-to-End Security for Publish/Subscribe Communication in Cyber-Physical Systems
The ongoing digitization of industrial manufacturing leads to a decisive change in industrial communication paradigms. Moving from traditional one-to-one to many-to-many communication, publish/subscribe systems promise a more dynamic and efficient exchange of data. However, the resulting significantly more complex communication relationships render traditional end-to-end security futile for sufficiently protecting the sensitive and safety-critical data transmitted in industrial systems. Most notably, the central message brokers inherent in publish/subscribe systems introduce a designated weak spot for security as they can access all communication messages. To address this issue, we propose ENTRUST, a novel solution for key server-based end-to-end security in publish/subscribe systems. ENTRUST transparently realizes confidentiality, integrity, and authentication for publish/subscribe systems without any modification of the underlying protocol. We exemplarily implement ENTRUST on top of MQTT, the de-facto standard for machine-to-machine communication, showing that ENTRUST can integrate seamlessly into existing publish/subscribe systems.