具有定向弱转移的预轴的上同性

J. Ross
{"title":"具有定向弱转移的预轴的上同性","authors":"J. Ross","doi":"10.1090/JAG/684","DOIUrl":null,"url":null,"abstract":"Over a field of characteristic zero, we establish the homotopy invariance of the Nisnevich cohomology of homotopy invariant presheaves with oriented weak transfers, and the agreement of Zariski and Nisnevich cohomology for such presheaves. This generalizes a foundational result in Voevodsky's theory of motives. The main idea is to find explicit smooth representatives of the correspondences which provide the input for Voevodsky's cohomological architecture.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cohomology of presheaves with oriented weak transfers\",\"authors\":\"J. Ross\",\"doi\":\"10.1090/JAG/684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over a field of characteristic zero, we establish the homotopy invariance of the Nisnevich cohomology of homotopy invariant presheaves with oriented weak transfers, and the agreement of Zariski and Nisnevich cohomology for such presheaves. This generalizes a foundational result in Voevodsky's theory of motives. The main idea is to find explicit smooth representatives of the correspondences which provide the input for Voevodsky's cohomological architecture.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/JAG/684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在特征为零的域上,我们建立了具有定向弱转移的同伦不变预轴的Nisnevich上同调的同伦不变性,以及这些预轴的Zariski上同调和Nisnevich上同调的一致性。这概括了Voevodsky的动机理论的一个基本结果。主要思想是找到为Voevodsky的上同调体系结构提供输入的对应的显式平滑表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology of presheaves with oriented weak transfers
Over a field of characteristic zero, we establish the homotopy invariance of the Nisnevich cohomology of homotopy invariant presheaves with oriented weak transfers, and the agreement of Zariski and Nisnevich cohomology for such presheaves. This generalizes a foundational result in Voevodsky's theory of motives. The main idea is to find explicit smooth representatives of the correspondences which provide the input for Voevodsky's cohomological architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信