{"title":"利用计算机体系结构的内在特征改进基于人工免疫系统的计算","authors":"Yiqi Deng, P. Bentley, Alvee Momshad","doi":"10.1109/SSCI.2016.7850157","DOIUrl":null,"url":null,"abstract":"Biological systems have become highly significant for traditional computer architectures as examples of highly complex self-organizing systems that perform tasks in parallel with no centralized control. However, few researchers have compared the suitability of different computing approaches for the unique features of Artificial Immune Systems (AIS) when trying to introduce novel computing architectures, and few consider the practicality of their solutions for real world machine learning problems. We propose that the efficacy of AIS-based computing for tackling real world datasets can be improved by the exploitation of intrinsic features of computer architectures. This paper reviews and evaluates current existing implementation solutions for AIS on different computing paradigms and introduces the idea of “C Principles” and “A Principles”. Three Artificial Immune Systems implemented on different architectures are compared using these principles to examine the possibility of improving AIS through taking advantage of intrinsic hardware features.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Artificial-Immune-System-based computing by exploiting intrinsic features of computer architectures\",\"authors\":\"Yiqi Deng, P. Bentley, Alvee Momshad\",\"doi\":\"10.1109/SSCI.2016.7850157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological systems have become highly significant for traditional computer architectures as examples of highly complex self-organizing systems that perform tasks in parallel with no centralized control. However, few researchers have compared the suitability of different computing approaches for the unique features of Artificial Immune Systems (AIS) when trying to introduce novel computing architectures, and few consider the practicality of their solutions for real world machine learning problems. We propose that the efficacy of AIS-based computing for tackling real world datasets can be improved by the exploitation of intrinsic features of computer architectures. This paper reviews and evaluates current existing implementation solutions for AIS on different computing paradigms and introduces the idea of “C Principles” and “A Principles”. Three Artificial Immune Systems implemented on different architectures are compared using these principles to examine the possibility of improving AIS through taking advantage of intrinsic hardware features.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Artificial-Immune-System-based computing by exploiting intrinsic features of computer architectures
Biological systems have become highly significant for traditional computer architectures as examples of highly complex self-organizing systems that perform tasks in parallel with no centralized control. However, few researchers have compared the suitability of different computing approaches for the unique features of Artificial Immune Systems (AIS) when trying to introduce novel computing architectures, and few consider the practicality of their solutions for real world machine learning problems. We propose that the efficacy of AIS-based computing for tackling real world datasets can be improved by the exploitation of intrinsic features of computer architectures. This paper reviews and evaluates current existing implementation solutions for AIS on different computing paradigms and introduces the idea of “C Principles” and “A Principles”. Three Artificial Immune Systems implemented on different architectures are compared using these principles to examine the possibility of improving AIS through taking advantage of intrinsic hardware features.